(o

s e S RS e D DL

MCR-81-515 NASA CR-181641

(NASA-CR-181631) DIGITAL AvIONICS DESIGN

AND RELIABILITY ANA : ; N88-23472
Corp.) 153 p LYZER (Martin Magégztggﬁ
Unclas
G3/62 0142951
| DIGITAL AVIONICS DESIGN AND
RELIABILITY ANALYZER .

NASA LaRC NAS1-15780

February 1981

Approved:

Edwal) 0 Kcded
Edward C. Stanke, II
Program Manager

PRSI IR E R

TABLE OF

1.0 Introduction . . .+ « « & ¢ .+ .
2.0 Applicable Documents
2.1 Reference Documents
2.2 Standards . . .+ ¢ 4 . 4 00 . o .
2.3 Other . . « & ¢« o ¢ ¢« ¢« ¢ « o &
3.0 System Functional/Operational

3.1 Introduction
3.2 Usage Phases« &
3.3 Test Design Phase
3.4 Test Execution Phase
3.5 Data Reduction/Analysis Phase .
4.0 System Specification
4.1 General System Configuration .
4.2 Hardware Configuration
4.3 Software Configuration
Appendix A Hardware Composition Trade
Appendix B Microprogrammable Computer

Attachment 1

ii

Study

Trade

CONTENTS

Study

Interim Technical Report

B-1

Page

e o & e o e v
e & * e * s e o
* e ° e 0 s o o
o ¢ ¢ o » s *
. - . . ® ° .
¢ o 8 e » s o .
. . . 3
. 'Y L] L]
- L] . .
« 4 " e * e ¢ o
. ° L - - . - .
L]
m . . . 3 . 3 . .
mb . . 3 . . . L] .
o e e e e s e e o
2y]
" e 4 & o ® o o o ol
o e & ® o ° o ® o
“ . - L4 L]
e * o * s o & o+ o
1
. . LY . . " o
* ¢ ° e ® o ®
¢ o % o ® o ° o
* o ® 4 * o o @
. ‘
* 4 °* & o o * o
.) . L]

TEPINE Y
! |
[Kaa B K T3 a2 DN JE 4

Figure

Page
A-1

L] L] L
(%]
© « o e
-t
b . . .
h - . .
>
Wy « o o ot
[e}
ES]
P e o o
ot
e e o o
« o o
e o o
. L] L
L L] .
. . -

Table
1

1.0 INTRODUCTION:

- This document contains the description and specifications for a digital
. avionics design and reliability analyzer. It is the result of the study done
o by Martin Marietta concerning the use of emulation for investigating
V f reliability and fault-tolerance issues for proposed highly reliable commercial
: digital avionics systems. The study was contracted by the NASA Langley
Research Center because of the coming technology in commercial aircraft, which
largely precludes traditional approaches to certification.

Airframes for the 1990's are designed to be much more fuel efficient than
current designs, but this fuel efficiency is bought at a price of less
stability. To maintain safe flight, very reliable avionics computers are

envisioned to allow the necessary quick reaction times and continuous
monitoring of flight parameters.

The computers are designed to break down so rarely (less than once in a
human lifetime) that conventional bench and field tests cannot certify their
reliability. The Federal Aviation Administration is in the process of
adopting new certification procedures that emphasize mathematical models and
simulations of the system over actual tests. To put the effort in
. perspective, the computers will be predicted to break down less often than the
. wings are expected to fall off planes in flight. The new avionics computers
must be significantly more reliable than today's avionics computers. They
could function unattended, despite hardware or software failures for at least
a 10-hour flight. This super-teliability will be gained through redundant’
hardware and software. Faults that occurred will be counteracted
automatically by hardware and/or software algorithms. As these highly fuel
efficient aircraft would fly 100 percent of the time in critically stable
conditions, control of the aircraft must be maintained concurrently with the .
fault detection and correction process. Further, any faults occurring during
the recognition and correction of a previous fault must be handled as well.

MERVIC ALY Prv NS

L WS

RPN

The hardware/software configuration described in this document is referred
to as the Digital Avionics Design and Reliability Analyzer. Its basic
function is to provide for the simulation and emulation of the various
fault-tolerant digital avionic computer designs that are developed. It has
been established that hardware emulation at the gate-level will be utilized.
The primary benefit of emulation to reliability analysis is the fact that it
provides the capability to model a system at a very detailed level. This

“means that rather than basing reliability analyses on manufacturer's supplied
data, or on expected probability distributions of failures of parts to
determine the response of a system, detailed models of a system may now be
employed on an experimental basis and system responses to faults observed
rather than predicted. Emulation allows the direct insertion of faults into
the system, rather than waiting for actual hardware failures to occur. This

allows for controlled and accelerated testing of system reaction to hardware
failures. :

This report. has two primary sections. Section 3 is a description of the
functions of the system. This is intended to provide a perspective of the
system for the specification which follows in Section 4. Section 4 contains
the more definitive hardware and software requ1rements necessary to achieve
the goals and functions given in Section 3.

1-1

o

B it ek e S22 et

Raea N

s W
b o EN

e

Cosda . -
RO V5 SRR S A Y

158

There are two Appendices and one Attachment. Appendix A is the trade
study which leads to the decision to specify a two machine system, including
an emulation computer connected to a general purpose computer. Appendix B is
an evaluation of potential computers to serve as the emulation computer.
Attachment 1 is the previously delivered Interim Technical Report. This
report details the feasibility study and describes in some detail the NASA
Langley gate level algorithm which provided the basis for most of the
performance figures required in the specification.

LR
R8T N PR AR

S
LR

BB PP SL R TS PE

2.0 APPLICABLE DOCUMENTS

2.1

2.2

2.3

Re ference Documents

Feasibility Study Report, Digital Avionics Design and Reliability
Analyzer, November 1979.
Interim Technical Report, Digital Avionics Design and Reliability
Analyzer, February 1980.
System Design Progress Report, Digital Avionics Design and
Reliability Analyzer, July 1980.

Electronics Industries Association Standard RS-449
Federal Standard 1031

Electronics Industries Association Standard RS-232-C
American National Standards Institute X.3.9-1966

1)
2)
3)
Standards
1)
2)
3)
4)
5) Federal
6) Federal
7) Federal
8) Federal
9) Federal
10) Federal
11) Federal
Other

Information
Information
Information
Information
Information

Processing
Processing
Processing
Processing
Processing

Information Processing

Information

Processing

To be furnished by the Government

Standards
Standards
Standards
Standards
Standards
Standards
Standards

2-1

Publication
Publication
Publication
Publication
Publication
Publication
Publication

REANION SR the DU NI SRt

e

A s A G

b
T
e
e

3.0 SYSTEM FUNCTIONAL/OPERATIONAL DESCRIPTION

3.1 Introduction

This section is intended to provide an overall description of what the
system (including the analyst) must do without regard to the elements;
hardware, software or manual procedures, which allow it to be done. The
emphasis in this section is on the logical functions required for the digital
avionics design and reliability analyzer. To express these functions, we use
structured analysis tools and notation.” The notation which will be used

throughout this section is based on three elements: data flow diagrams,
mini-specifications, and the data dictionary.

3.1.1. Data Flow Diagrams

Data Flow Diagrams (DFD) are used to present the system pictorially thus
reducing the amount of narrative needed. A DFD is a network representation of
a system. The system may be automated, manual, or mixed. The DFD portrays
the system in terms of its component functional pieces with all interfaces
among the components indicated. A DFD does not represent the flow of control
or the order of processing. Numbers used on the diagrams are for

identification purposes only. Data Flow Diagrams are made up of four -basic
elements:

1) Data fiows, represented by named vecto
packets of information of known compos

rs, are
ition flow.
2) Processes, represented by bubbles, are transformations of incoming

data flow(s) into outgoing data flow(s). Each process bubble needs a
descriptive name.)

3) Data stores, represented by two straight horizontal lines, are
temporary repositories of data and may consist of tapes, discs, card
sets, index files, data bases,or even someone's memory.

4) Data sources and sinks, represented by boxes, are persons,
organizations, or other entities lying outside the context of a
system, that are net originators or receivers of system data.. A
source box exists only to provide commentary about the system's
connection to the outside world.

Data Flow Diagrams are expressed in levels. The first level, called the
Context Diagram is labeled Diagram 0 and portrays an overall picture of the
system with subsystems shown. These subsystems are labeled 1 through N. The
subsystems are broken down in separate DFDs and further described. The
components of the first subsystem are labeled 1.1, 1.2, 1.3, etc. When a

subsystem has been decomposed to as simple a form as necessary. it is called a
functional primitive.

1. Tom DeMarco, Structured Analysis and System Specification. New York;
Yourdon, 1978.

There are many advantages to using leveled Data Flow Diagrams. They allow
a top-down approach to analysis. By reading the top few levels one can get
the big picture, or one can begin with the abstract and go to the detailed and
narrow in on particular areas of interest. Each page is a complete
presentation of the area of work allocated to it. All diagrams can be
restricted to 8 1/2 X 11 inch paper.

3.1.2 Mini-Specification

The second part of the system functional definition consists of the
Mini-Specifications which are concise descriptions of the bottom-level bubbles
(functional primitives). Each Mini-Spec describes rules governing
transformation of data flows arriving at the associated primitive into data
flows leaving it.

3.1.3 Data Dictionary

To augment the Data Flow Diagram, there is an entity called the Data
Dictionary. This contains rigorous definitions of all Data Flow Diagram
elements such as data flows, components of data flows, files, and processes.
These definitions relate all data elements through sequence, selection, or
iteration.

3.1.4 The structured analysis information in this section is augmented as
necessary by textual material to highlight important points.

3.2 Usage Phases

The digital avionics design and reliability analyzer is intended to
support three primary uses:

1) Reliability analyses
2) Failure effects analyses
3) Conventional performance analyses

Regardless of their differences, each of these has several characteristics
in common with the others. Primary among these commonalities is the fact that
each involves data gathering which is facilitated by the technology of
emulation. As shown in Figure 3-1, there are 3 basic phases of each use.
These phases are:

1) Test design
2) Test execution
3) Data reduction/analysis

FURIFIEER AN A

v

ot D e i A e e A b

Start

Test
Defined

Data
I nadequate

Run
Scenarios

Run Completed

"\ Data

Adequate

Figure 3-1 Facility Use Phases Stop

These phases are shown in a different form in the Context Data Flow
diagram given in Figure 3-2. In this diagram, the results of each phase are
shown. Test design encompasses processes 1l and 3, test execution is process 2
and data reduction is process 4. Model building, process 1, is an inherent
part of test design and so is not considered a separate phase in itself.

3.3. Test Design Phase

The modeling part of the Test Design Phase is shown graphically in Figure
3-3, and described in the process descriptions. One key concept which needs
highlighting is the division of a system into functional blocks. This
partitioning is necessary due to the time constraints of emulating at the gate
level. Based on the results of the feasibility study (see Attachment 1), it
is impossible to emulate the gate structure of the entire system under test.
Thus the mixed mode concept, where the system is simulated at a functional
level until a fault is inserted at which time the functional simulation of the
affected block is replaced with a gate level emulation of that block.

Following Figure 3-3, Figure 3-4, and Figure 3-5 are mini-specifications
describing each process shown in these figures.

- One other concept not shown explicitly concerns the redundant computations
which occur in a fault tolerant computing system. In a model, there is no
necessity of actually performing redundant operations until one of the
redundant paths errs (due to the introduction of a fault). This concept
arises also during the Test Execution.

3.4 Test Execution Phase

The Test Execution Phase is shown in Figure 3-5. As noted in 3.3, the
actual execution uses a combination of functional level simulation and gate
level emulation of the machine under test.

sisAjeuy ubisaq puy Ajigenjay wJopad g€ 84nbid
)sheuy
B SynsaJ-siskjeue)
‘ sisAjeuy
wJojtad
v)
- B)ep-uoi}ndaxa
SA1}03.41p-}S8) $9A1}09.1p-158)
\ papasu uoljiuyap
-s)nsaJ -waysAs
saA1}03.1Q -adfy R
1591 1531
auwJslag 15Ajeuy
saAnIa.Iq ¢
buipioday ejeq uolyuyap
saApoasp ~J X saA1)oalIp -wajsAs
-bujp.aoda.-ejep -buyp.iodai-ejep EBM\M -158}
-3
[apowW- Wa}sAs
B)eg uny ¥
[3pow
ﬁ wa)sAs J
e)ep- UoI}NJaxa —
91BM}YOS .
suoljeayddy
-), L
3.eM)j0S-3|qepeo) 3.1eM)J0S-3|qepeoj

¢ weubeiq

japow waysAs japow ¢€-¢ aJnby

UET

28 Japow .M.oh_wﬁ uodiJ053p-|RjUBWILOIIAUS - UIB}SAS)
Pyry -jejuauiuoliAUR IE
3|qeyNdaxXa
suonea)ddy a.1eMyos
ajqepeo
8:_9“&.““ aJEM}J0S-]53))
uonyd1iosap
- Jojyesauab-apod
13pow
jeuopuny |
9pow 3:?:.0_ uodi35ap- |eUOIOUN)- WBYSAS)
-13A3]- Jeuoiauny €1 :
19pOW WaysAg $314epUNOG- WA)SAS
-3 suondau
-U02Ja)u|
uoljew ojuj- Aiepunog 3npow
waysks swe.beip
) < : sAjeu
%_>_z_=.m~ -120{q- WRSAS hevy
_/
sweabep-o1bo|-waysks .
P ~
/ \
_ j9pow sopdeds 9L\
WYY |ana7-2189 19pow sujwJaeQ
Iapou-jaa)-a)ed 3onpo.d euyaq \ ¢ /
1 Al N / 1 weubeiq
—

R

3-5

R YTRN T

PROCESS: 1.1, Subdivide System
;PROCESS SPECIFICATION

IF model-information CONTAINS "gate-level-model-needed" THEN
CREATE functional-block USING system-block-diagrams
DEFINE system-boundry USING functional-block
DEFINE internal-interfaces USING (functional-block AND

system-block-diagrams)
ELSE

DEFINE internal-interfaces USING system-block-diagrams
ENDIF
DEFINE external-interfaces USING system-biock-diagrams

ENDPROCESS -

PROCESS: 1.2, Produce Gate Level Model

. :PROCESS SPECIFICATION

IF model-information CONTAINS "gate-level-model-needed" THEN
FOR EACH functional-block IN system-boundries DO
CREATE block-gate-model USING system-logic-diagrams
TRANSLATE block-gate-model TO block-gate-table
ENDFOR
ASSEMBLE gate-level-model FROM block-gate-tables
ENDIF

ENDPROCESS

PROCESS: 1.3, Produce Functional Model
;PROCESS SPECIFICATION

FOR EACH functional-block IN system-boundries DO
CREATE (block-functional-model AND interface-behavior-model) USING
(system-functional-description AND internal-interfaces)
TRANSLATE (block-functional-model AND interface-behavior-model) TO
(functional-level-simulation-code AND functional-level-symbol-table)
ENDFOR)
ASSEMBLE functional-level-model FROM (functional-level-simutation-code AND
functional-level-symbol-tabte) '
CREATE code-generation-description USING system-functional-description

ENDPROCESS

ORIGINAT: PAGE IS

OF POOR QUALITY

IRy SRR SN A

<

L e ek e W

PROCESS: 1.4, Define Model Specifics
;PROCESS SPECIFICATION

IF model-type-needed CONTAINS "gate-level-model-needed" THEN
SET model-information TO "gate-level-model-needed" +

"model-subdivision-needed"
ELSE

SET model-information TO "monolithic-model-needed"
ENDIF

ENDPROCESS

PROCESS: 1.5, Produce Model Interconnection
;PROCESS SPECIFICATION

FOR EACH system-boundry DO
DEFINE boundry-information USING (system-block-diagrams AND

system-logic-diagrams)
ENDFOR

ENDPROCESS

PROCESS: 1.6, Produce. Loadable Software
;PROCESS SPECIFICATION

FOR EACH test-software DO '
TRANSLATE test-software TO (machine-object-code AND symbol-table)
USING code-generation-description
ENDFOR

ASSEMBLE loadable-software FROM {machine-object-code AND symbol-table)

ENDPROCESS

PROCESS: 1.7, Produce Environmental Model
;PROCESS SPECIFICATION

CREATE environmental-model-description USING
system-environmental -description

TRANSLATE environmental-model-description TO executable-environmental-model

ENDPROCESS

3-7

1581 aujuLIgleq

SaA1}0841Q
}s8)

—

SaAI}091p-159)

aouanbag

aulag
G'€

p-¢ a4nby4

153

papaau
-)jnsai
poJISap -adh
-ejep
}shleuy

)

- N
7\
\ waysAs T
[apow T
/ . y papaau-adA}- japowl suyeq
\ P ¢t
N —
paJisap-ejep
pe}a8|10)
ag o] ejeq
aujwia)eq
I°¢
T ecaAnna Il . paJisap-ejep

SaA23.IQ
buipioday ejeq

o

SaAladIq
buipJoday
ejeq

SjuI0d
uojjejuswWNIsu

SaA10a41p auyag paJisap-ejep aulwiae(Q
- -eje . + sjuod .
Pulpauo0.-5EP v _UOREJUALNASU] et

R T T ey T R T ST T T e

3

papaau-}jnsal-adA

|9pOW Wa)SAS

¢ weubeiq

3-8

¢ PROCESS: 3.1, Determine Data to be Collected
;PROCESS SPECIFICATION

IF type-result-needed = reliability-number THEN
DETERMINE confidence-level-desired
CALCULATE number-of-samples-necessary FROM confidence-level-desired
DETERMINE type-data-necessary /+ for statistical reduction */
DETERMINE (type-of-failure-desired AND desired-failure-distribution)
ELSE
: IF type-result-needed = failure-effects-analysis THEN
DETERMINE number-of-samples-necessary
DETERMINE type-data-necessary FROM failure-mode-of-interest
FOR EACH number-of-samples-necessary DO
DETERMINE type-of-failure-desired
ENDFOR
ELSE
IF type-result-needed = performance-characteristic THEN
DETERMINE type-data-necessary /* for specific characteristics */
ENDIF
ENDIF
ENDIF

2l il T RS wbdB L

ENDPROCESS

PROCESS: 3.2, Define Model Characteristics
;PROCESS SPECIFICATION

IF type-data-necessary -IN data-desired CONTAINS "gate-performance” THEN
SET model-type-needed TO "functional-model-needed" +
"gate-level -model-needed"
ELSE
SET model-type-needed TO "functional-model-needed"”
ENDIF

ENDPROCESS

PROCESS: 3.3, Determine Instrumentation Points
;PROCESS SPECIFICATION

DETERMINE instrumentation-points IN (executable-environmental-model AND
functional-level-model) USING
type-data-necessary IN data-desired
IF type-data-necessary IN data-desired CONTAINS "gate-performance" THEN
, DETERMINE instrumentation-points IN gate-level-model
ENDIF :

ENDPROCESS

3-9

e
g

5

~

]
4
i
.
s

RE A

ARTR N
PAEAPEN

PROCESS: 3.4, Define Data Recording Directives
;PROCESS SPECIFICATION

FOR EACH instrumentation-point DO
DEFINE data-recording-directives USING data-desired
ENDFOR

ENDPRQCESS

PROCESS: 3.5, Define Test Seguence
:PROCESS SPECIFICATION

IF type-result-needed = reliability-number THEN
FOR EACH number-of -samples-necessary DO
DETERMINE faults-to-be-inserted FROM (desired-failure-distribution AND
specific-system-portion-of-interest)
ENDFOR
ELSE
IF type-result-needed = failure-effects-analysis THEN
DETERMINE faults-to-be-inserted FROM (type-of-failure-desired AND
specific-system-portion-of-1nterest)
ENDIF
ENDIF
DETERMINE environmental-model-directives /+ for desired test */

ENDPROCESS

3-10

aseg ejeq }s3) andaxy G-¢ 8unby

aje}s panes

Y
-panes

aje)s

-paAes 94

~ SaAl23JIQ)SaL
uny T P

SaA1}03.1P-159)

eleq uny

——

BJep-uoInIaxa

wa)sAs-pajuawnaisul

SaAR23.IQ
buipi02ay-ejeq

waysAS\
juawnyysu| T)

YA S3AI}0aJIp buipi0dal-ejep

3-11

‘aJemyos
suoned|ddy

J

aJemyos-ajqepeo)
- UoKeW J0ju - A1epunoq)
[pow [aA3|-[euonoun;)
|3pow E&;m
3)
ﬁ |apou-|anaj-ajeb p
\ |3pOU- |BJUBLLUO.IIAUI-|GeJNIBXI

wajsAs
-paanbyuod

aJemyos ¢
peoi
1%

Sajqe}- |oquiAks

N, weubeiq

I L N S

RS T i ot iiorer el Ak

PROCESS: 2.1, Load Software

+PROCESS SPECIFICATION

ASSEMBLE configured-system FROM (executable-environmentail-model +
(functional-level-model + (gate-level-mode! +

(boundry-information + loadable-software))))

ENDPROCESS

PROCESS: 2.2, Instrument System

;PROCESS SPECIFICATION

| ﬂ FOR EACH data-recording-directive DO
L 1F data-recording-point = "symbol" THEN
Do FIND insertion-point IN symbol-table
T ELSE
i IF data-recording-point = "target-memory-location” THEN
“ FIND insertion-point USING functional-level-symbol-table
: ENDIF
i ENDIF
5 CHANGE machine-object-code TO “trap"
3 OUTPUT instrumented-system
8 ENDFOR
-y
ENDPROCESS

2 PROCESS: 2.3, Run Test
fﬁ ;PROCESS SPECIFICATION

IF test-directive CONTAINS "load-saved-state® THEN
RETRIEVE saved-state FROM saved-stat2-data-base
ENDIF
FOR EACH test-directive DO
/* execute test directive */
ENDFOR

ENDPROCESS

3-12

RPN \PYLEE

e

3.5 Data Reduction/Analysis Phase

The Data Reduction/Analysis Phase is shown in Figure 3-6. For failure
effects analysis or conventional performance analysis, this phase consists
mostly of grouping and analyzing collected data to determine actions, trends,
etc. For reliability analysis, this phase consists of data reduction and

statistical analysis, followed by the use of the results in a reliability
model of the system.

3.6 Data Dictionary

The Data Dictionary follows Figure 3-6 and defines all terms used in the
data flow diagrams as well as the mini-specs. For the Data Dictionary, the

following symbols indicate:

1) = is composed of

2) () optional item

3) (&b g alternative items
n m

4) iterations of with optional lower (n) and upper (m) limits
5 + and

3-13

sisleuy wJojsad 9-¢ aJnby

sisAjeuy
1shieuy Auigeyay , . -~
8 uny uoi}Iu1Jap- Wa)sAs-1s3)
Sy
Jaquinu- Ayyj1qeyja.-pajoipad 4 |
papaau + eep
- JInsaJ - Uo1}99Xa
-adfy -yisodwod |
ejeq
uonndax3 poapaau-}|nsas-adA
dnou N
ejep puy mo:uow + Pepasu-s)|nsaJ- Aljigerjal
-Uo1INJAXa : vy
ejeg uny /.m
™
oep
-Uoj}ndaxXa s}ine4 paw.ojtad
| pajdasu| ag ol p
o) sisAjeu }sAjeuy
)|nsaJ-s)oajje-aln|ie) 10 51941 pepeau-)} nsai-adAy IsAleuy papaau
azAjeuy aujwuslaq
. + papaau-s)isys-a.in|ie) 17 -)jnsal
£y -adRy

)sAjeuy

popaau- }|nsaJ-8dA} + paJisep
-Sa1)s143)0 4Ry 2-3dUewW Jojsad

eeq RlRQ UNY .
uonZax3 D,
saJnseaw-3oueullojsad aonpay e)ep- UOINIX3

A

p weubeiq

L AT YT ST 8 M ST

PROCESS: 4.1, Determine Analysis to Perform
. ;PROCESS SPECIFICATION

IF type-result-needed CONTAINS reliability-number THEN
OUTPUT reliability-results-needed
" ELSE
" IF type-result-needed CONTAINS failure-effects-analysis THEN
OUTPUT failure-effects-needed
ELSE
IF type-result-needed CONTAINS performance-characteristic THEN
OUTPUT performance-characteristics-desired
: ENDIF
, ENDIF
. ENDIF

ENDPROCESS

PROCESS: 4.2, Reduce Execution Data

:PROCESS SPECIFICATION

e AR W i S S e

ASSEMBLE execution-data USING performance-characteristics-desired
EXTRACT performance-measure

ENDPROCESS

PROCESS: 4.3, Analyze Effects of Inserted Faults

;PROCESS SPECIFICATION

FOR EACH faults-to-be-inserted IN execution-data DO
DETERMINE (effect-of-fault AND propogation-of-fault) USING execution-data
OUTPUT failure-effects-result

ENDFOR

ik el A T L R v i

-

L ENDPROCESS

PROCESS: 4.4, Reduce and Group Execution Data
;PROCESS SPECIFICATION

ASSEMBLE execution-data USING specific-system-portion-of-interest
CHANGE execution-data TO composite-execution-data

ENDPRQOCESS

3-15

PROCESS: 4.5, Run Reliability Analysis
;PROCESS SPECIFICATION
- /* Run reliability model using composite-execution-data */

CALCULATE predicted-reliabi]ity-number USING (composite-execution-data +
conf idence-level-desired)

ENDPROCESS

Ct P Gk

R ORI R ST L

3-16

DATA DICTIONARY

actuator-description = SELF_DEFINING /* description of actuators */
analysis-result = [performance-measure | reliability-number
failure-effects-result]
‘ block-functional -model = SELF_DEFINING /* description of the behavior of
i each functional block =/
R block-gate-model = SELF_DEFINING /* machine readable version of system logic
H diagrams broken into functional
) blocks */
block-gate-table = f$gate-info3l
block-gate-tables = §block-gate-table}
block-number = SELF_DEFINING /* id of the block this gate is in */
boundry-information = SELF_DEFINING /* list of inputs and outputs to system */
code-generation-description = op-code-information + instruction-formats
composite-execution-data = fexecution-data}
conf idence-level = number
conf idence-level-desired = percentage
configured-system = executable-environmental-model + gate-level-model +
functional -level-model + boundry-information +
loadabie-sof tware
current-gate-value = ["0" | *"{1" | "undefined" | "tri-state"]
data-desired = [number-of-samples-necessary + type-data-necessary +
confidence-level-desired + type-of-failure-desired +
tdesired-failure-distributioni | type-data-necessary] +
specific-system-portion-of-interest
data-recording-directive = data-recording-point + data-to-be-gathered +
[time-interval | time | system-significant-event] +
output-device + output-format
data-recording-directives = §data-recording-directive}
s data-recording-point = ["symbol" | "target memory location"]
’ data-recording-points = {data-recording-point}
data-to-be-gathered = SELF_DEFINING /* this item left unspecified since it
could be wide range of possibitities,
ranging from modeled items to actual
items in the modeling machine */
desired-failure-distribution = probability-distribution
desired-performance-information = SELF_DEFINING /* this is the performance
characteristic which we need to ascertain.
Since the possibilities are numerous, this
definition is not constrained. */

TERINRIICL VPO | SEE VAN

. -
PO THN X

3

PR 4 7T A

duration-of-fault = number

effect-of-fault = [stuck-at-fault | transient-faulit]

environmental -model -description = fsensor-description3 + {actuator-descriptiont
+ joutput-device-descriptiony +
tinterconnection-description}

environmental-model-directive = initial-value + range-limits

environmental-model-directives = environmental-modetl-directivel

environmental -model-performance = time + sensor-state

environmental-simutation-code = machine-object-code

environmental-symbol-table = symbol-table

event-identifier = ["sensor out of bounds" | "machine parameter out of bounds" |

system-significant-event]

3-17

+
4
I
Wy
"
2
i

T
!
H
:

Vot

v
T B A7

e

k2

DATA DICTIONARY (CONT)

executable-environmental-model = environmental-simulation-code +
environmental-symbol-table
1{run-id + [reliability-sample-data | performance-sample-data
| failure-effects-sample-datal}l
number
SELF_DEFINING /* this is an input from the system from the
outside world. No restrictions are placed on
its form or contents */
external-interfaces = fexternal-inputd + {external -output}
external-output = SELF_DEFINING /+* this is an output to the outside worid.
No restrictions are placed on its form or
content. */
failure-effects-analysis = "failure effects needed" +
specific-system-portion-of-interest + type-of-failure-desired
failure-effects-needed = specific-system-portion-of-interest +
type-of-failure-desired
failure-effects-result = ffaults—to-be-inserted + propogation-of—fault?
failure-effects-sample-data = 1i§initial-state-data + {§faults-to-be-inserted +
fgate-behavior-datai}
failure-mode-of -interest = failure-effects-analysis + faults-to-be-inserted
fault-insertion = "fault inserted" + faults-to-be-inserted
faults-to-be-inserted = location-of-fault + time-of-fault + effect-of-fault
+ duration-of-fault
functional-block = subsystem + internal-interfaces
functional-blocks = ffuncticnal-block}
functional -element -performance = SELF_DEFINING /* performance measures of some
portion of the system. This
jtem is so varjable, it is not
specified in detail */
functional-level-model = functional-level-simutation-code +
functional-level-symbol-tahle
functional-level-simulation-code = machine-object-code
functional-level-symbol-table = symbol-table
gate-behavior = last-gate-value + current-gate-value
gate-behavior-data = gate-id + machine-cycle + gate-behavior
gate-id = block-number + gate-number
gate-info = gate-state-info + fgate-outputt
gate-interconnection-table = fgate-id + {gate-idi}
gate-level-model = iblock-gate-table} + {gate-1nterconnection-tab1e3 +
gate-symbol-table
gate-number = SELF_DEFINING /+ id of this gate within its block */
gate-output = SELF_DEFINING /+* pointer to one of this gates outputs */
gate-performance = fgate-behavior-datal
gate-state-info = gate-type + gate-value
gate-symbol-table = symbol-table
gate-type = ["AND" | "OR" | » NAND" | "NOR" | "INVERT" | "XOR" | "FLIP-FLOP"]
gate-value = ["0" 1 "1" | *undef ined" "tri-state"])
initial-state-data = time + texternal-input} + $external -output3 +
jsensor-stated + ginternal-state}
initial-value = SELF_DEFINING
insertion-point = machine-object-code-location

execution-data

execution-time
external-input

3-18

PR ANERERas FACE S WP

PR

Bl st e

i

oy

N

DATA DICTIONARY (CONT)

insertion-points = {insertion-point}
instruction-formats = SELF_DEFINING /* information concerning addressing modes,
bit patterns, etc as needed by the
code generator */
instrumentation-point = machine-object-code-location
instrumentation-points = ginstrumentation-point?
instrumented-system = imachine-object-code} + fdata-recording-points§ +
finstrumentation-points}
interconnection-description = SELF_DEFINING /* description of how sensors,
actuators, output devices are connected
to the test system x/
interface-behavior-model = SELF_DEFINING /* list of interconnections between
functional blocks */
internal-interfaces = SELF_DEFINING /# connectiona between blocks */
internal-state = imachine-state3
interrupt = SELF_DEFINING
last-gate-value = ["0" | "1* 1| "undefined" | "tri-state"]
loadable-sof tware = gmachine-object-code + symbol-table}
location-of-fault gate-id
lower-1imit = SELF_DEFINING
machine-cycle = SELF _DEFINING /* id of the current machine cycle */
machine-object-code = SELF_DEFINING
machine-object-code-location = number
machine-state = SELF_DEFINING /* this is the state of the computer, including
registers, memory, mode and any other
parameters necessary to describe the current
status of the machine itself #*/

mode) -information = ["gate-level-model-needed"” | "model-subdivision-needed"
| "monolithic-model-needed"]
model -type-needed = "functional-model-needed" + ("gate-level -model -needed")

number = SELF_DEFINING

number -of -samples-necessary = number

op-code-information = SELF_DEFINING /* information concerning op codes as
needed by the code generator */

output-device = ["disk" | "tape" | "console” | "line printer"]

output-device-description = SELF_DEFINING /* description of any other system

output devices */
output-format = ["decimal" | "octal" | "hexidecimal" | "binary" |
"unformatted"] .
percentage = number
performance-characteristic = "performance information needed" +
desired-performance-information

performance-characteristics-desired = specific-system-portion-of-interest

performance-measure = SELF_DEFINING /* this will depend on the type of measure
desired. this is highly variable so
no enumeration is given here */

performance-sample-data = 1§initial-state-data + isignificant-event-data}y

predicted-reliability-number = number + confidence-level

probability-distribution = SELF_DEFINING

propogation-of-fault = ggate-behavior-datag

3-19

PR\

e Pl

DATA DICTIONARY (CONT)

range-1limits = upper-limit + Jower-limit

reliability-number = "relijability number needed" + conf idence-level -desired
reliabitlity-results-needed = conf idence-~level-desired
reliability-sample-data = i1isample-number + initial-state-data +

isignificant-event-datail
run-id = number
sample-number = number
saved-state = [configured-system | instrumented-system] + time +
Sexternal-interfaces} + isensor-state? + iinternal-state}
saved-state-data-base = f{saved-state}
sensor-description = SELF_DEFINING /* description of what sensor is and how it
: behaves. May be text */
sensor-state = SELF_DEFINING /* this is the current state of the sensor as
’ defined by some parameters such as orientation,
or by its output values =*/
significant-event-data = time + fexternal-input} + fexternal-outputd +
{sensor-state} + tinternal-statel + event-identifier
specific-system-portion-of-interest = functional-block
stuck-at-fault = [stuck-at-one-fault | stuck-at-zero-fault
stuck-at-indeterminate-fault]
stuck-at-indeterminate-fault = SELF_DEFINING
stuck-at-one-fault = SELF_DEFINING
stuck-at-zero-fault = SELF_DEFINING
subsystem = SELF_DEFINING /+ any reasonable chunk of the system which can be
: jsolated as an identifiable piece */
symbol-table = insertion-points + instrumentation-points
/* + a bunch of other stuff x/
system-block-diagram = SELF_DEFINING /* block diagram of the system of interest
. showing major components and their
interfaces */
system-block-diagrams = isystem-block-diagramg
system-boundries = & system-boundryg
system-boundry = ffunctional-block?d + finternal-interfaces} +
extarnal-interfaces
system-environmental-description = SELF_DEFINING /= description of the behavior
of the system external
environment including all
input and output */
system-functional-description = SELF_DEFINING /* description of the functional
tevel behavior of the system,
including instruction fetch and
decode of the computer(s) =*/
system-logic-diagram = SELF_DEFINING :
system-logic-diagrams = isystem-logic-diagram3}
system-model = executable-environmental-model + functional-level-model +
(gate-level-model) + boundry-information
system-significant-event = [interrupt | trap | fault-insertion] .
test-conduct-directive = initial-state-data + execution-time + sample-number
test-directive = ffaults-to-be-inserted} + ienvironmental-modeI-directive}
+ jtest-conduct-directivel

3-20

T o SR T TSN A

EOC

DATA DICTIONARY (CONT)

test-directives = £ test-directive}

test-software = SELF_DEFINING /* source software for the system under test */

test-system-definition = system-environmental-description +
(system-logic-diagrams) + system-functional-description +
test-software 4 system-block-diagrams

time = number

time-interval = number

time-of-fault = number

transient-fault = SELF_DEFINING

trap = SELF_DEFINING /* this is the occurrance of a system trap inserted for

the purposes of recording data or some such reason */

trap-insertion = SELF_DEFINING

type-data-necessary = (gate-performance) + (functional-element-performance) +
(environmental-model -performance)

type-of-failure-desired = [stuck-at-fault | transient-fault]

type-result-needed = [performance-characteristic | faitlure-mode-of-interest
| retiability-number] + specific-system-portion-of-interest

upper-limit = SELF_DEFINING

3-21

4.0 System Specification

4.1 General System Configuration

This specification describes the requirements for the digital avionics design
and reliability analyzer. This facility consists of two major hardware
itemsas shown in Figure 4-1, a general purpose computer providing user support
and interface, simulation, and numerous other pieces of software; and an
emulation computer to provide either gate level emulation or general
instruction level hardware emulation. These two computers are interfaced for
synchronization and data transfer. The software for the facility is shown in
diagram 4.2. Of the five major components only a small part of the general
purpose support software, the model building software and the test execution
software run on the emulation computer. The major portion of the software
runs on the general purpose computer.

m

1apec
Drives
Operator 2)
Console

Graphic Workstation

O General

Display Purpose Emulation

Computer
Digitizing Computer
Board

| Electrostatic

Printer/
Plotter

Line
Printer

User
CRT

Figure 4-1 System Hardware Components -

4-1

sjusuodwo) a.emyos waysAs z-p 3.nbiy

bngaq (apow-
- suoleIUNWWo)
Joje|sues] JayndwodJau |-
uonejnw3 salnN
J9AdT uonINUISU|- Jajsued) ejeq-
Joje|suesy sabenbuen
Bu1japow | [9POW |3A87 8Je9- - buywweuboid 49-
Al1geljoy- wyyIoBly S1BMHOS 1591- Jojejsued] sjuauodwo) T

sisAjeuy [aAd] 9je9- uoneJauag [2poWy |euonoung- pajualI() 43sn-
|BINSHENS- 013u0D uopasul Jnes- Jojejsueu) washs
uononpay ejeg- uojjnasxi- 01JeUdIS }s9]- [9pOW [ejuawuodjAu3- bupjetadp 49-

. Jdoddng

UoI}N98x3 uope.lausg bupjing asoding

sisAjeuy 1591 }s8l [3pOW . [eJauag

aJemyos
waysAs

B el A ad coon
B M R

L0 s i

4.2 Hardware Configuration

The system shall consist of two cooperating machines connected via an
interface. These machines shall be:

1) A general purpose computer providing user interface; software support
such as editors, assemblers, compilers, simulation support; and
analysis support.

2) An emulation computer supporting emulations ranging from gate level
to instruction level.

4.2.1 General Purpose Machine
4.2.1.1 Central Processor

4.2.1.1.1 The system shall have a real-time clock (interval timer) for use by
the operating system

4.2.1.1.2 Machine hardware instructions shall include integer, single and
double precision floating point, packed-decimal, character string
manipulation, bit shifting and rotating, and logical instructions.

4.2.1.1.3 Hardware fault detection shall be provided, i.e., detection of
divide by zero, expoment overflow, and expore.; unde;flc".

4.2.1.1.4 The system shall detect a power failure or fluctuation and have the
capacity to provide for an orderly system shutdown. Upon re-establishment of
stable power, automatic restart of the system must be provided for. This
requirement may be met by battery back-up to maintain proposed MOS (metal
oxide semiconductor) memory allowing for operator notification and
intervention. The system must be maintained for a long enough period to
permit any necessary steps to be accomplished to allow for restart of the
system and user programs.

4.2,1.1.5 The architecture of the system shall be based on a computer with

effective addressing, register size, and interger arithmetics of at least
sixteen (16) bits.

4.2.1.1.6 The general purpose computer shall have the speed and power
necessary to execute the envirommental model and the functional level model
specified in 4.3.2.1 in the normal operating mode, cooperating with each
other, at a slow down of not more than 3000 times real time.

4.2.1.2 Memory

4.2.1.2.1 The memory requirements stated are in terms of bytes. A byte is
defined as the alphanumeric character oriented unit of measure composed of a
least eight (8) bits. Manufacturers whose internal architecture is such that
they normally operate with less than 8 bit bytes must adjust their bytes or
words of memory proposed to reflect the 8 bit requirement. Memory single word
size must be at least sixteen (16) bits available to user programs.

4.2.1.2.2 The initial configuration must be a minimum of one-half (1/2)
million bytes of main memory. The system architecture shall not preclude a
single user program from utilizing the full complement of main memory beyond
the residency requirement of the operating system and related software.

SRR LSRR Y L TS ST ST R

Both hardware and software shall support two (2) million bytes of physical
4 memory for expansion purposes.

§ 4.2.1.2.3 Areas or regions of memory shall be memory protected to facilitate
- the protection of the operating system and individual user programs. This
i requirement may be met by any combination of hardware and/or software features.

- 4.2.1.2.4 Single bit fault correction and multiple bit fault detection shall
i be provided.

All detected memory faults shall be logged by the system. This log shall be
accessible by either a vendor, customer engineer, and/or government personnel.

4.2.1.2.5 The rationale for the one-half (1/2) million bytes of main memory
is as follows:

1) Traditionally, interactive graphics systems tend to be complex and to
require significant amounts of memory to operate effectively. The
interpretive graphic subsystem is only a small portion of the total
system and will undoubtedly have to operate concurrently periodically
with other tasks. Even if operating by itself, it is quite
conceivable that once in a production mode that multiple digitizing
stations will be required.

2) As detailed system design has not been completed, it is difficult to
predict with an accuracy the ultimate memory requirement of the test
execution software. The following items will need to be memory
resident for the test execution and in total will be significant in
terms of memory required:

a. Fault tolerant target machine object code.
b. Compiled hardware description code for the target machine.
c. Actuators/sensors values and associated bound limits.

d. Fault data being introduced.

The fault tolerant target machines will be complex in terms of having
redundant hardware components and significant associated control/management

i software.
5'.;3 3) With anticipated run times of test execution software to be in terms
S of hours or days, throughput can not be significantly degraded due to

“‘Qg excessive page thrashing and/or overlay roll-in and roll-out. The
: requirement for physical memory to be expandable to two (2) million

. bytes is to keep execution times within reason as the fault tolerant
systems under study become more complex.

4,2.1.2.6 Memory allocation shall be dynamically allocated with the ability
to support at least four (4) interactive devices concurrently at installation
time and expandable to eight (8). A minimum of two (2) batch jobs must run
concurrently with the interactive users. The enviromment is to be that of
true multiprogramming, i.e., a fixed partition foreground/background

3 environment specifically shall not be permitted.

;; 4.,2.,1.3 Disk Storage

g 4.2.1.3.1 Five-hundred (500) million 8 bit bytes of removable and
interchangeable formatted disk storage shall be available to the users of the
system. Disk storage required for system software is in addition to this

requirement. This disk space for the system shall be expandable by a factor
of two (2).

4.2.1.3.2 Average access time including latency and seek time, shall be 55
milliseconds or faster. The transfer rate shall not be less than 800,000
8-bit bytes per second.

4.2.1.3.3 The vendor shall provide an initial complete set of recording
media, as well as a complete backup set, both containing no more than 0.01%

unnacceptable sectors per unit.

4.2.1.3.4 A minimum of two (2) physical drives are required.

Cr D i i e taee il a2 e

it

4.2.1.3.5 The five-hundred (500) million 8-bit bytes of removable and

interchangeable formatted disk storage for the user is considered justified
for the following reasons:

1) Disk I/O spooling area for local print output. It 'is anticipated
that the various report products shall be maintained on disk for
several work days during their review, the rationale being to save
computer run time in the event that additional copies are required
for further study and distribution.

2) Provision for multiple files of gate level logic diagrams with
associated legend. These files represent the various portions of the
target fault-tolerant computer system under evaluation. Different
portions of the target fault-tolerant computer system will be at
different stages of the capturing and editing of gate level logic
diagrams via the interactive graphics subsystem.

3) Program source code library.

4) Program object code library.

5) Multiple gate queueing structure tables in emulator computer
compatable format.

6) Multiple fault data files.

Sl e

s

P P R
LU AR NI SRR L P C SR Ky TN P

W

N

7)

8)

9)

10)

11)

12)

13)

Multiple files of the initial conditions and bound limits of the
avionic actuators and sensors of the fault tolerant systems under
study.

Multiple hardware configuration descriptions defining various fault
tolerant system options.

Library of procedure files and parameter files.

Data files associated with mathmatical and statistical analysis
routines.

As the mechanical/electronic nature of disk drives require frequent
maintenance, the requirement of two physical spindles was specified
to allow some work to continue when one drive in unavailable.
Admittedly, the capability will require careful organization of the
disk files.

Further, utilizing a large capacity disk drive allows achievement of
economy of scale. For example, a calculation revealed that, for ome
vendor, going from a medium to a large capacity drive resulted in a
162% increase in capacity for a 76% increase in cost.

Disk space is required for the recording of data during the execution
of test software (4.3.4). The approach taken of recording
information only when out of limits conditions occur (4.3.4.4.3) is a
compromise over what the run data recording requirements could be.
The calculation provided here is an example of what the run storage
requirements would be if recording of data were to be done for each
target machine simulated/emulated cycle.

Assumptions:

6,000 gates

157 gate state changes

lus target machine cycle time
1,000 samples per run.

Calculations:
900 (152 of 6,000) gate state changes per cycle
900,000,000 gate changes per sample
9000,000,000,000 gate changes per run
With 3 gate changes recorded per
32 bit word, 300,000,000,000 words of disk required.
1,200,000,000,000 bytes of disk required
or if on magnetic tape
With 4,000 charactor tape blocks
300,000,000 blocks at 3 inches of tape each is 900,000,000
inches of tape
900,000,000 - 28,800 = 31,250 2400 foot reels

3
b
i

-
A
v
i
1
3
A
Sy

a
i
3
“I

R T S RRUCT UL P St

4.2.1.4 1/0 Devices

4.2.1.4.1 Tape Drivers

4.2:1.4.1.1 Two (2) read/write nine track 1600 CPI phase encoded tape drives

of not less than 75 IPS read/write speed or less than 120,000 bytes per second
peak transfer rate shall be provided.

4.2.,1.4.1.2 The tape units shall provide for read-after-write check feature.

4,2.1.4.1.3 The tape units shall handle up to 2400 foot reel size.

4.2.1.4.1.4 The tape units shall be of the vacuum chamber type. Mechanical
feed arms are not permitted.

4.2.1.4.2 Line Printer

4.2.1.4.2.1 One (1) impact type printer shall be provided. The printer shall
have no fewer than 132 print positions. The ASCII character set of 95
characters shall be employed. The proposed printer shall be able to line
space at 6 and 8 lines per inch, vertically. The printer must provide
standard horizontal spacing of ten characters to the inch.

4.2.1.4.2.2 The throughput requirement is minimally 600 lines per minute when
printing full 132 character lines consisting of the 95 printable character set.

4.2.1.4.2.3 The system shall be upgradable to a configuration of two (2)
printers meeting these specifications.

4.2.1.4.3 Operator Console

4,2.1.4.3.1 The system operating console shall provide for hard copy output.
The console must be of rugged construction capable of withstanding heavy use,
i.e., continuous use during operating hours. This requirement would not
preclude a printing unit operating as a slave to a CRT operator comsole.

4,2.1.4.4 Telecommunications Hardware

Telecommunication hardware shall be provided to handle data exchange and its
associated line disciplines between local temrminals and the host computing
system. Attached terminals will be used for time sharing, inquiry/response,
local graphics and local plotting. The system shall be able to handle half
and full duplex lines concurrently. Circuit disciplines in general shall

include at the minimum start/stop half duplex and full duplex asynchronous
transmission.

4.2.1.4.4.1 All telecommunications hardware supplied by the vendor shall
conform to the Electronic Industries Association Standard RS 449. The
govermment has adopted RS-449 as Federal Standard 1031, which became mandatory
for all procurements by federal agencies starting June 1, 1980. EIA Standards
RS-449, RS-422, and RS-423 are intended to gradually replace RS-232-C.
Telecommunication hardware which conforms to the new standards shall be
provided. The vendor's proposal must state how existing terminals which
conform to RS-232-C will be accomodated.

4.2.1.4.4.2 The telecommunications hardware/software shall support the
Teletype (TTY) start-stop asynchronous communications. The .
emulators/simulators are intended for use with various ADP vendors, so the
proposed emulation/ simulation shall not be specifically designed for any

particular vendor.

[P BRI LA At
i

e et it

4.2.1.4.4.3 The initial four (4) communications ports (See A.2.2.5) will be
utilized for some combination of alphanumeric CRT(s), graphic display,
digitizer board, and electrostatic plotter. The proposed system must be
upgradable to eight (8) communication ports.

4.2.1.4.4.4 One (1) interactive user CRT terminal is to be provided by the
vendor. The unit will be locally attached to the CPU operating at the speed
of 1200 BPS or faster. The physical connection will not exceed the industry
standard of fifty feet. This unit will be utilized by the software program
specified under 4.3. The following are minimum specifications to be met:

o 1) 80 character line width

2) 24 vertical lines

S e

3) Fill-in-the-form capability with the form stored in the background
and variable information entered in the foreground. Once the form
has been loaded to the CRT memory, it will be utilized for a series
of transactions without need for retransmission from the computer.
Only the variable information is to be transmitted to the computer
during the data entry process.

PO O

4) Normal and reverse video

R L R
L RKITADE i L e

"' 5) Double inteﬁsity

;53 6) Blinking

| 7) Underlining

4.2.1.4.5 General Purpose Computer Emulation Computer Interface

4.2.1.4.5.1 The contractor shall provide any necessary hardware to
interconnect the general purpose computer to the gmulation computer. (Related

software is specified under 4.3).

4.2.1.4.5.2 Data transfers between the two computers will consist of the
following:

4.2.1.4.5.2.1 For reliability analyses data gathering, the transfers will
include: i '

DI PO

B LI .
Dl i LS Dt dils f

1) At the start of the run, the general purpose computer will load the
emulation computer control memory with the gate level emulation
algorithm and the emulation computer primary memory with the gate
tables for the specific system portion of interest.

2) During the run at each fault insertion time, the gate tables within
the emulation computer primary memory will be updated to reflect the
inserted fault by the general purpose computer.

3) During the run, for each machine cycle, the inputs to the block being
emulated at the gate level will be transferred from the general
purpose machine to the emulation machine and the outputs of the block
will be transferred back from the emulation machine to the general
purpose machine. The quantity of data transferred depends on the

degree of interconnection between the emulated block and the rest of
the system.

4.2.1.4.5.2.2 For failure effects analysis, the data transfers will be the
same as specified in reliability analysis data gathering. In addition, at the
end of each cycle, the new state of each changed gate may potentially be
transferred from the emulation computer back to the general purpose computer.

4.2.1.4.5.2.3 For standard emulation purposes, data transfers will be as
follows:

1) At the start of the run, the emulation machine control and primary

memory will be loaded with the appropriate software by the general
purpose machine.

2) During the run, input and output data from the envirommental
simulation to the emulated machine and back will be transferred at
appropriate times.

3) Additional data concerning the state of items in the emulated machine
may potentially be transferred back to the general purpose machine
for performance evaluation purposes.

4.2.1.4.5.2.4 The speed of the computer-computer interface for data transfer
shall be sufficiently fast so that the predominant amount of time in the
reliability analysis data gathering experiments will be time for
simulation/emulation of the system rather than for data transfer.

4.2.1.5 1Interactive Graphics Subsystem

4.2.1.5.1 The contractor shall provide the necessary hardware to capture and
validate gate level logic diagrams. (Related software is specified under 4.3)

4.2.1.5.2 The graphics workstation is to be made up of the following
components:

4
:

[P R -

1) Digitizing Board with cross-hair cursor. The digitizing surface must
be large enough to handle logic diagrams up to standard size E (34" X
44"). The gantry style digitizer is preferred, but is not
mandatory. The logic symbols are not to be digitized in detail. The
symbol type is to be selected from a menu and the symbol position is
to be recorded via the cursor. With this approach, a digitizer board
with minimal accuracy, resolution, and repeatability may be
utilized. A resolution of 100 points per inch is adequate. The
working surface shall have both tilt and height control.

2) Graphics CRT with alphanumeric keyboard. The ninimum screen size
shall be 19". This requirement may be met by a single raster scan
type graphic CRT with the capability of a reference drawing being
flashed onto the screen from which a zoom-in area may be selected.
The requirement may also be met via two storage tube type graphic
CRT's. A reference drawing would be displayed on one CRT while
zoom-in areas are displayed on the second CRT.

3) Electrostatic plotter with a roll paper width of 36". The unit shall
have a resolution of 100 points per inch. The electrostatic plotter
will be used primarily for quick turnaround images for validating
plots against the original input document, i.e., gate level logic
diagrams.

4.2.2 Emulation Computer

4.2.2.1 CPU Architecture - The emulation computer shall be user
microprogrammable. The microcode shall provide control over primitive
functions within the machine (e.g. connection of registers to busses, ALU

operations, etc) and shall provide the capability for parallel operations
within a microword.

4.2.2.1.1 Microcode containing the NASA Langley gate-level algorithm or
similar algorithm must be programmed into the emulator. Due to the stringent
speed requirements for processing such an algorithm, the microcode must
perform multiple operations in parailel.

4.2.2.1.2 Each gate being processed is described by a gate information word
of eight or more bits. This word is also the address to which control is
transferred in micro store, thus micro store must be sufficient to handle all
locations addressed.

4.2.2.2 Memory
4.2.2.2.1 Microprogram Memory - Sufficient microprogram memory shall be
provided to accomodate a table-driven gate level emulation algorithm.

Requirements of the algorithm are detailed in paragraph 4.3.4.7. As a
minimum, at least 1K words of microprogram memory shall be provided.

4-10

(USSP ASE IR SGRE v - NURE

WO ST SRR A N Y

4.2.2.2.2 Primary Memory - Sufficient primary memory shall be provided to
contain the gate level tables required by the emulation algorithm. These
tables shall accomodate at least 5000 gates with an average gate fan-out of
2. As a minimum, at least 32K words of primary memory shall be provided.

4.2.2.3 The selection of the micro code to be executed shall be via a
"vector" type mechanism. That is, some combination of bits in a word
containing gate status shall provide the address of the microinstruction to be
executed. Such a mechanism precludes the necessity of testing 1nd1v1dua1 bits
to determine the action to take for a particular gate.

4.2.2.4 The emulation computer shall also be useful for instruction level
emulation of digital devices. The characteristics of the machine shall be
such that it will accomodate such emulation.
4,2.2.5 The emulation computer shall be interfaced to the general purpose
computer for data transfer and for software level synchronization of
cooperating, parallel simulations and emulations in the two machines. Data
transfers expected are defined in 4.2.1.4.5.
4.,2.2.6 The emulation computer shall have the speed and power necessary to
execute the gate level emulation, in the normal operating node, for 6000 gates
for 0.1 seconds of emulated time in 5 minutes or less of real time. - The cycle
time of the emulated system for this timing figure shall be 1 microsecond, the
average gate fanout shall be 2, and in any one cycle, 5% of the gates w111
change value, on the average.
4.3 Software Configuration
The software consists of five major pieces. These pieces are:

1) General purpose support software

2) Model building software

3) Test generation software

4) Test execution software

5) Analysis software

The software, with exception of some of the test execution software, some of

the general purpose support software, and some of the model building software
shall run on the general purpose machine.

4.3.1 General Purpose Support Software

4.3.1.1 General Purpose Machine Operating System

4-11

RS

R AT N Y

Bl
3
3
N
o

i Lueags o

-_.L;’

f

4.3.1.1.1 The system shall feature a single, fully implemented operating
system that integrates all the hardware and software that comprise the
system. The operating system shall be generally available in the market
place. More specifically, all features and capabilities shall have been
publicly and formally announced and operational prior to the offer submission
deadline.

4.3.1.1.2 It is anticipated that the primary mode of operation will be a
single operator performing a single task. Examples would be a single graphic
station capturing a logic diagram or a simulation/emulation job running alone
in the system. However, the architecture of the system shall not preclude the
concurrent processing of a simulation/emulation run with the digitization
process. Nor should the architecture preclude the addition of a second
graphic work station in the future to operate concurrently with the original
graphic work station.

Allocation of resources to tasks shall be performed as automatically as
possible. All the software items specified throughout this document shall be
able to operate concurrently with any and all others, except for restrictionms
such as momentary unavailability of an equipment resource.

4.3.1.1.3 The operating system shall provide a dynamic enviromment. That is,
memory management shall be done in such a manner that all concurrent running
jobs in total may require more memory than what is physically available. The
addition of more physical memory would improve the system's performance. This
capability shall be provided without requiring the 'programming staff to define
overlays.

4.3.1.1.4 The operating system shall have the ability to produce and retain

"in mass storage for later processing, resource utilization data pertinent to

each task performed. The resource data produced shall include most of the
following by user account/charge: :

1) Number of lines printed

2) Central processing unit usage

3) Input/output usage

4) Remote terminal connect time or traffic statistics
5) Actual memory used

6) Amount of mags storage used

Simplified measuring units such as the aggregate of the items above, shall be
reversible to the individual component level.

4-12

TR O S e

LAl 2 e ene

FIESTIONISIRA Y

4.3.1.1.5 The operating system shall operate the following basic job origin
tasks concurrently:

1) Interactive

2) Local batch

4.3.1.1.6 The operating system shall provide for I/0 spooling. Spooling of
local print output shall be provided for. Spooling is defined here.as
providing a temporary file that will act as a buffer for spontaneous input or
output of data and thereby reduce impacts to executing programs waiting for
1/0 services. Direct, i.e., non-spooled, I/0 shall also be available for
time-critical transmissions.

4.3.1.1.7 Terminal users of the system shall be able to communicate with the
system operator via terminals and vice versa via the operator control

console. This is required because terminal users may or may not reside in the
same room as the system. '

4.3.1.1.8 Interactive batch job submittal from time-sharing devices shall be

provided. The user shall be pemmitted to save files on either magnetic tape
or mass storage disk.

4.3.1.1.10 The system response time to an interactive user system command
shall not exceed an average of two (2) seconds. The absolute maximum response
time shall not exceed thirty (30) seconds.

4.3.1.1.11 The system must provide for a job control language that allows the
user to override system defaults and parameters pertinent to job management,
job scheduling and data management. This provision shall provide control over
job priorities; job termination options; programmatic steps within a job
stream; job dispatching and execution, etc.

4.3.1.1.12 Security and system authorization. The system must limit access
to any and all installation resources, including files and data contained
therein. This facility will only allow processes to those users that are
pre-defined as authorized for access. Read and write permits must be features
within the data authorization scheme. ‘

4,3.1.1.13 The operating system shall be considered to be state-of-the art.
That is, the operating system shall have been designed, developed and
implemented to support an enviromment of concurrent interactive and batch
jobs. The system being specified in this document is to be utilized in the
evaluation and testing of fault tolerant airborne avionic computers of the
future. When consideration is given to this fact and the fact that the
enviromment is one of new technological development, it is prudent and
reasonable that only the best available resources and tools should be made
available for the project.

4-13

4.3.1.2 User Oriented System Software Components -

4.3.1.2.1 A file editor shall be provided with the following minimum
capabilities:

5 1) With the exception of binary object files and files written by
: FORTRAN as unformatted, be able to manipulate any and all files used
by the system.

2) Must be available interactively and optionally be available through
the batch mode.

3) Must contain, as a minimum, the following, or equivalent capabilities:

1. Replace String

| 2. Change line

At L

3. Delete

FRCEVAN

4. Print/List
5. Search (forward and backward)

6. Insert

B . L T
PIRRRRSIRAPINE DR ISP

7. Add

Aga e i

4) Must provide the user with the view that his whole file is
immediately available to him, that is, he must not have to
specifically fill and empty the current edit buffer.

57,

Gl el Tl

f% 4.3.1.3 General Purpose Programming Languages
‘;; 4.3.1.3.1 A FORTRAN compiler that minimally meets the ANSI X.3.9-1966
. specifications shall be provided. The delivered compiler must be stable and

thoroughly debugged.

4.3.1.3.2 An ASSEMBLER or hardware level compiler shall be provided which
possesses features not available in the high level programming languages
required under 4.3.1.3.1 and 4.3.2.2. Bit and character level manipulation,
privileged instructionms, register referencing, and branching based on hardware
conditions shall be provided.

‘ 4-14

4.3.2.1 The relationships of the various models shall be as follows:

4.3.2.1.1 The envirommental simulation shall execute in the general purpose
machine and shall simulate the effects of the systems, sensors and activators
which interface to the digital avionics computer(s). This would include such
jtems as attitude and rate sensors, attitude control activators, etc. This
model shall produce the identical effect as if the avionics computer(s) were
connected to actual devices in a real system.

4.3.2.1.2 Functional level machine simulation shall provide a model of the
behavior of the avionics computer(s). This simulation shall be at the
instruction level of the computer such that actual software may be executed by
the simulation with results identical to the real avionics computer(s). This
model shall interact with the enviromnmental model, reacting to the inputs
provided by that model and producing the appropriate outputs to that model.
This model shall also interact with the gate level emulation(s) which are
active by providing the appropriate inputs and receiving the outputs of the
gate level emulation(s).

4.3.2.1.3 The gate level emulation shall provide a model of the behavior of a
portion of the digital avionics computer(s) at the gate level. It shall
interact with the functional level simulation by receiving inputs from that
simulation and by providing appropriate outputs to the simulation. This model
will correctly propagate inserted faults to its outputs.

4.3.2.1.4 The instruction level machine emulation, 6 is intended to interact
only with an environmental simulation. This model shall provide the
capability to emulate, on the emulation machine, a complement of digital
hardware at the instruction level. This is intended for gathering data
concerning performance and not for failure effects or reliability evaluation.

4.3.2.2 Model Description Translators
4.,3.2.2.1 Environmental Model Translator

4.3.2.2.1.1 A translator shall be provided which will translate an
environmental description into executable simulation code on the general
purpose machine. The translator shall accomodate descriptions of outputs,
inputs, limits, etc., for sensors, activators and items external to the
avionics computer(s). The translator shall accomodate tagging items of
interest for later checking on limits during the simulation execution.

4.3.2.2.1.1 The envirommental model execution code shall interface to and
provide input and output for the functional level computer simulator.

4.3.2.2.2 Functional Model Translator

4,3.2.2.2.1 A translator shall be provided to translate a functional or
instruction level description of one or more digital avionics computers into
executable simulation code on the general purpose machine.

4-17

o .
U S

-
(RAPOTIES

iakaa feasandh

P VW

dai s T i e b

'
L

[

vt
3 s ol R

4
A
SRR

4.3.2.2.2.2 The functional model translator shall use a hardware description
language which allows expression of the structure and behavior of digital
systems.

4.3.2.2.2.2.1 The hardware description language shall provide for expression
of timing and synchronization, both between internal elements and between the
system being described and the extermal enviromment. '
4.3.2.2.2.2.2 The hardware description language shall provide for description
of the interface between the system being described and the external
environment in terms of inputs and outputs. This description shall provide
the tie to the executable code for the envirommental model so the two models
will work together.

4.3.2.2.2.2.3 The hardware description language shall allow the description

of the system in terms of independent functional blocks and the interfaces
between those blocks. The translator shall produce code which allows the

replacement of the code for a functional block with something else which will
provide the same inputs and accept the same outputs without modifying the
model itself. This shall provide the link between the functional simulation
model and the gate level emulation model.

4.3.2.2.3 Gate Level Model Translator

4.3.2.2.3.1 The gate level model translator shall translate system logic
diagrams to the gate level tables needed by the gate level emulation algorithm.

4.3.2.2.3.2 The gate level model translator system shall include all
necessary interactive graphics software to operate on the general purpose
computer for capturing and validating logic diagrams. Standard logic symbols
shall be used for:

1) Inverter

2) AND gate

3) OR gate

4) XOR (exclusive OR) gate

5). NAND (not AND) gate

6) NOR (not OR) gate

7) RS flip-flops

8) T flip-flops

9) D flip-flops

10) JK flip-flops

11) other logic devices.

4-18

N D) S
AT 7 Y X R PP

eV RN

The software capability to capture legend and associate the legend with each
gate or device symbol shall be provided. The software shall provide for
multiple logic diagram sheets for a single function to be emulated. That is,
a single logic diagram up to 34" X 44" in size will not always represent an
entire function to be emulated as a complete unit. Yet each separate sheet
must be stored on disk as a subunit for output on the electrostatic plotter
for the validation process. Off diagram linkages to other sheets must be
provided for. A single "E" size drawing 34" X 44" will represent
approximately 1500 gates.

4.3.2.2.3.3 The translator shall translate the logic diagrams captured via
the graphics system to produce the gate level tables required by the gate
level emulation algorithm on the emulation computer. Each functional block,
corresponding to the functional blocks of the functional level simulation

model, shall be in a separate table, identifiable with the corresponding
functional level block.

4.3.2.2.3.4 A language translator shall also be provided which allows
description of gates and their interconnections in a purely textual manner.
The output of this translator shall be identical to and compatible with the
graphics input translator.

4.3.2.2.4 1Instruction Level Emulation Translator

4.3.2.2.4.1 The instruction level emulation translator shall provide the same
functions as the functional model translator specified in 4.3.2.2.2 except
that the executable code to which the description is translated shall be code
for the emulation computer rather than the general purpose computer.

4.3.2.2.4.2 The instruction level emulation translator shall use a hardware
description language but there is no requirement for partitioning into
functional blocks. The translator shall provide the interfaces to the
environmental model simulation running in the general purpose computer.

4.3.2.2.4.3 The instruction level emulation translator shall provide a code
generation description output which may be input to a retargetable software

translator such as a compiler or assembler which will translate the software
to drive the described system. The description shall provide instruction

formats, machine code descriptions and any other data necessary.

4.3.2.3 Link Software. Any software necessary to link the various models and
allow them to communicate shall be provided.

4.3.2.4 Model Debug Packages
4.3.2.4.1 Debug packages shall be provided for each type of model.

4.3.2.4.2 The debug packages shall support interactive control and display of
actual system parameters and modeled system components.

4-19

4.3.2.4.2.1 The debug packages shall support control of each model including
as a minimum .

1) Start

2) Stop

g 3) Single Step
i 4) Trace

3 5) Breakpoints (minimum of 16)

6) Item value change trace
7) Continue after break
& 8) Interactive modification of values

7 4,3.2.4.2.2 The debug package shall support display of both actual and
: modeled systems items including as a minimum:

1) memory
2) registérs
3) emulated gates
N
4) external inputs and outputs (envirommental simulation)

5) processor state

6) time

4.3.2.4.2.2.1 The items to be displayed shall be specifiable by the operator
including display device and format.

4.3.2.4.2.2.2 Items shall be capable of being tagged for display in response
to system events such as:

1) breakpoint
2) interrupt
3) user command

4) trace

5) single step

4-20

4.3.3 Test Generation Software

Software for developing test scemarios and fault insertion shall be provided.

4.3.3.1 Test Scenario Software

4.3.3.1.1 The test scenario software shall include the capability to specify
a sequence of runs, perhaps with differing parameters, which will subsequently
be run automatically by the system.

4.3.3.1.2 The test scenario software shall include the capability to specify
initial values of all external inputs, simulated devices and internal state,
including time, of the test system. This shall include the capability to load
a configured system which has been previously stored on a storage device.

4.3.3.1.3 The test scenario software shall include the capability to specify
specific data to be collected, the format of the data and the event in
response to which the data shall be recorded.

4.3.3.2 Fault Insertion Generation

A L A

4.3.3.2.1 The fault insertion generation software shall provide the

capability for either automated or manual generation of faults to be inserted
in the gate level emulation.

4.3.3.2.2 The fault insertion generation software shall produce the following
information concerning each fault to be inserted:

1) Gate identifier to receive the fault

2) The simulation/emulation run time at which the fault is to be applied
in terms of sample number and fraction of time within the sample.

3) The duration of the fault

4) The fault state that is to be introduced, i.e., steady zero state,
steady one state, intemmittent zero state, or intermittent one state,
or alternating between the zero and one. state.

4.3.3.2.3 The manual fault generation software shall allow the analyst to
specify all of the factors for each fault as given in 4.3.3.2.2.

4.3.3.2.4 The automated fault generation software shall allow the analyst to
specify the following:

1) Number of faults to be generated

2) Specific system portion of interest or probability distribution of
faults across the system

3) Probability distribution of faults over time for each sample

4) Probability distribution of type and duration of faults.

4-21

i
i

t s

et b re

)

i
<

4

H
o

4.3.3.2.4.1 The automated fault generation software shall produce the data
specified in 4.3.3.2.2 through the use of random number generators to provide
the desired distributions.

4.3.3.2.5 The fault generation software shall produce the information
specified in 4.3.3.2.2 in such a way that the simulation execution system will
use it to insert faults at the specified time in the specified sample in the
gate level emulation.

4.3.3.3 Test Driver Software Generation

4.3.3.3.1 The capability shall be provided for translating software for the
target (emulated/simulated) machine on the general purpose computer. The
translated software shall be used to drive the test system during the
execution phase.

4.3.3.3.2 It is highly desirable that the translation process be entirely
automated, taking as input the source code and a description of the machine
for which code is to be generated and then producing object code for that
machine. Translators which operate in this mode are often referred to as meta
assemblers or meta compilers.

4.3.3.3.3 It is highly desirable to have a meta compiler delivered to satisfy
this requirement. However, given the current state-of-the—-art, a meta
compiler with retargetable code generator is not available. As a minimum a
meta assembler is required.

4.3.3.3.3.1 The meta assembler will have as one input a description of the
instruction formats, operation codes and addressing modes of the machine for
which code is to be generated. This input shall be produced from the hardware
description language specified in 4.3.2.2.2, augmented as necessary for this
particular task.

4.3.3.3.3.2 If a meta compiler is proposed, it shall have the same
requirements as specified for the meta assembler in 4.3.3.3.3.1.

4.3.4 Test Execution Software

Software for executing the given test shall be provided. This software shall

provide for the control of all the simulation and emulation models during a
test.

4.3.4.1 The execution software shall provide for coordination of timing
between the various models so that they are all synchronized in relationm to
simulated time.

4.3.4.2 The execution software shall also coordinate the execution of the

simulations and emulations in the following manner for tests in which fault
insertion is used.

4-22

JURIREIURYTL 1 SN SRR

N L b s A

4.3.4.2.1 The execution software shall execute the functional level model and
the envirommental model until the time at which a fault is to be inserted.

4.3.4.2.2 When the fault is to be inserted, the execution software shall
cause the execution of the functional block in which the fault is inserted to
switch from the functional level simulation to the gate level emulation with

the inserted fault. The balance of the simulated system, without the faults,
will continue at the functional level.

4.3.4.3 The execution software shall provide for the data recording specified
under the test scenario software in reaction to the events specified.

4.3.4.4 For data reliability analysis collection, the following data
collection shall be provided.

4.3.4.4.1 At the start of a sample, sample number, initial conditions
(external inputs and outputs and internal system state) and all other
pertinent information shall be recorded.

4.3.4.4.2 At the time of insertion of a fault, the sample number, system
inputs and outputs and internal system state, and all the information
concerning the fault shall be reco;ded.

4.3.4.4.3 At any time during the run, whenever any of the inputs or outputs
exceed the limits specified under the test scenario software, the sample
number, simulated time, inputs, outputs, internal system state, and value out
of limits shall be recorded.

4.3.4.4.4 As the test execution software may very well run for hours or even

days, it is absolutely mandatory that automatic check-point restart capability
be provided.

4.3.4.5 The execution software shall operate without user intervention but

shall allow the user to stop the execution and save the system state for later
reload.

4.3.4.6 The execution software shall provide support for all of the model
debug packages specified in 4.3.2.4. It shall allow execution of the total
system in debug mode.

4.3.4.7 The execution software shall include the gate level emulation
algorithm.

4.3.4.7.1 The gate level emulatjon algorithm shall be table driven, using the
gate tables produced by the translator specified in paragraph 4.3.2.2.3.

4.3.4.7.2 The gate level emulation algorithm shall be able to emulate at
least a 6000 gate system.

4.3.4.7.2.1 The maximum slow down factor for the algorithm operating on a

6000 gate system, assuming an average gate fan out of 2, 5% of gates changing
value in any one emulated machine cycle, shall he 3000 times slower than real

4-23

1
)

.
]

time. This timing should be based on a 1 microsecond emulated machine cycle
time.

e
JR 11

4.3.4.7.2.1.1 This requirement is based on the results of the feasibility
j study (Attachment 1).

4.3.5 Analysis Software

1 Software to support the reduction of the data gathered during test execution
! ~ shall be provided. This software shall provide for data reduction,
statistical analyses and reliability modeling.
4.3.5.1 The data reduction software shall allow the analyst to group common
data and reduce it to necessary components, using the data recorded during the
test execution phase. It shall allow the extraction of items deemed important
for a particular use on an individual basis by the analyst.
; 4.3.5.2 The statistical analysis software shall provide the capability to
4 calculate statistical parameters from the reduced data produced above. The
Yy following capabilities shall be provided at a minimum:
;S 1) Matrix manipulation

Real Matrices

Complete Matrices

Eigen values, Eigen vectoers
2) Ordinary differential equations
3) Regression analysis
4) Time series analysis
5) Variance analysis
6) Interpolation
7) Numerical integration

8) Differentiations

9) Polynomial manipulations

4.3.5.3 The reliability modeling software shall provide the capability to
develop parameterized, unified reliability models of the system of interest.

4.3.5.3.1 The reliability model shall be capable of using the statistical

data produced from actual test execution as an input in place of predicted or
expected paramters.

4-24

4.3.5.3.2 The reliability model software shall suppport development of models
for fault tolerant, multiple processor systems.

!

:
r
1
3
o
]
a
3

4-25

APPENDIX A
Hardware Composition Trade Study

R R s L S AR TR Sttt St S N T it

e ee T e &

PR RPN U S IPRNUR C SIUPRI S & JAPUC U ST S SR

I.
II.
III.
Iv.

Introduction
Methodology
Evaluation
Final Recommendation .

Table of Contents

. o ¢ o . . . ¢ o
“ . . . « = * o
« e . o o . . o o
« o « o

A-ii

A-1
A-1
A-2
A-2

I. Introduction

This trade study was done to determine the best approach to the hosting of
the various pieces of software needed by the digitial avionics design and
reliability analyzer. The trade study was designed to answer the question:
"should the facility be based on an emulator-only system or emulator/support
machine system?". The emulator/support system envisions an emulation machine
. connected to general purpose computer. The general purpose computer supports
most of the software, with the emulator supporting only actual emulations. 1In
the emulator-only system, the emulator must support everything.

II. Methodology

: To perform the trade study the following 5 criteria were established:

1) Operation speed

2) User interface

3) Difficulty of use

4) Cost of implementation
5) Size of facility needed

NRIENPSSE DL S

These criteria were then rank ordered in order of importance (as shown in

the list above) and assigned weights of 5 to 1 with 5 being the most important
(operation speed).

ST

Each alternative was then evaluated for its satisfaction of each criteria
on a scale of 1 to 10 with 10 being most satisfactory and 1 the least. We
then multiplied the satisfaction by the criterion weighting to obtain the
weighted ranking. Weighted rankings for each criterion were then added to
give a total for each alternative, with the higher score reflecting the ''best"
choice. The results are shown in Table A-1l.

2

[) ; .-
VPN ¥ OV IN SIS OB DRTRELIG R R 2R

Table A-1 Hardware Composition Trade Study

IR

o

Ty
A
A

Cost Of Implementation (2)

Size Of Facility (1)

Operation Speed (5)
User Interface (4)
Difficulty Of Use (3)

Total

Emulator Only

e
U
ot
(=3
Pmd
v
poend

0 41 60

Emulator/Support 39 24 18 6 4| 8

S PN

[

i

I3
g et AR a2 WA e b 4 i o

III.

Evaluation

1)

2)

3)

4)

5)

Operation Speed - The feasibility study indicated that the primary
limiting factor for the avionics design and reliability analyzer in
the gate level emulation mode is the speed of the gate level
emulation. In the emulator/support case, the support computer
removes the burden for support of environmental simulation etc., from
the emulator. Thus this combination rates 6. A more parallel system
could get a higher score. The emulator only system rates a 3.

User Interface - The user interface is one of the key items in the
use of the facility. If this interface is poor, there will be a
reluctance to use the system. General purpose support machines have
the user interface as one of their most visible portions and hence,
modern operating systems have attempted to provide for a flexible
interface. Emulators, on the other hand have a much narrower
applicability and hence less attention is paid to such '"mundane"
factors. i

Difficulty of Use - This relates not only to the user interface, but
also to the operating system backing it up. The emulator/support
combination can use the genmeral purpose operating system to hide the
tedious details of interaction with the emulation machine which is
attached to it. In the emulator-only case, the user usually has to
explicitly deal with the details of the emulation machine.

Cost of Implementation - The emulator/support system represents an
increase in hardware cost over the emulator-only system. Comparable
software needs to be developed in both cases, with the exception of
the additional driver software necessitated by the emulator/support
interface.

Size of Facility Needed - There is no clear indicator that either
choice represents a better possibility here.

IV. Final Recommendation

Based on the established criteria,.the emulator/support system is
recommended.

§
»

LIPS

i

APPENDIX B

PR

Microprogrammable Computer Trade Study

K]
i
~
1

@ I. Introduction « « + o ¢ o v ¢« o o o . e
? II. Microprogrammable Computer Architecture
| III. Requirements . . « o « « « o & o o o o
f 1v. Computer Search . . « ¢« « ¢ ¢ ¢« & « &
: V. Computer Performance Analysis
' VI. Conclusion . « v ¢ o & o ¢ o ¢ ¢ o o &

g

B

PR

B-ii

Table of Contents

B-1
B-1

B-3
B-6
B-15

List of Tables

Page

B-4
B-5

o
o~
ol

3

1
3
P2
4
3

IRSINETIE)

I. Introduction

The following trade study was done to determine which microprogrammable
computers would best serve as the emulator portion of the digital avionics
design and reliability analyzer. First a search was done to find all

available user-microprogrammable machines. These were then analyzed to

determine which ones met the requirements for implementing the NASA Langley

gate-level emulation algorithm. The machines which met the requirements were
then compared concerning performance and price. A select few were recommended

as candidates for the emulator portion of the digital avionics design and
reliability analyzer.

II. Microprogrammable Computer Architecture

A microprogrammable computer is one whose microcode can be changed by the
user. Microcode, which is stored in control store, consists of
microinstructions which control the primitive operations of the computer. A
complex operation performed by a computer can be represented as a sequence of
microoperations. There are three types of microimstructions:
allowing one operation per instruction; diagonal, allowing one or more; and

horizontal, allowing many operations per instruction, thus increasing

processing speed.

I1I. Requirements

There are a number of requirements that must be met by a user-

[microprogrammable computer in order to implement the NASA Langley gate-level
: algorithm. These requirements are based on a feasibility study implementation
: of the algorithm using the Nanodata QM/1 computer.
1. The microcode controlling the machine shall be user-programmable
| : through software.
‘ ; 2. The microcode shall provide for parallel operations within a single
microword.
3. Control shall be directed from main store via a gate info word of at
least 8 bits to micro store using a vector mechanism. The gate info
word contains the address of the location in micro store to which

control is directed.

DT PN, SN NP PR

4. Control store shall contain at least one thousand words.
i 5. Main memory shall be sufficient to handle the algorithm, at least 32

thousand words.

3
£y
-

1

)

i

P L e A

s i

s

s 5 S el -
L PRSI TV A

PRPE XN

IV. Computer Search

Various references were investigated in order to find names of all
companies manufacturing minicomputers which are microprogrammed. The
following sources were used: Auerbach Publishers, Inc., Data Pro Information
Services, Electronic Buyers' Guide 1980, NASA Recon Data Base (remote
console), Defense Technical Information Center, and the Lockheed DIALOG data
base. This search resulted in the list of companies shown in Table B-1l. Each
company was then contacted and asked which, if any, of their minicomputers
were user microprogrammable and could function as emulators. The list of

computers shown in Table B-2 resulted from these inquiries.

Table B-l. Computer Manufacturers Surveyed

MANUFACTURER ' COMMENT
1) Burroughs See Table B-2
2) Cado Systems ‘ Word length limited to 8 bits
3) Control Data Corp. See Table B-2
4) Data General See Table B-2
5) Digital Equipment Corp. See Table B-2
; 6) Digital Scientific See Table B-2
| 7) Hewlett Packard See Table B-2
% 8) ﬁoneywell See Table B-2
; 9) Nanodata Corp. See Table B-2
é 10) Northrop Data Sys. Nothing user microprogrammable
.é 11) Microdata Nothing user microprogrammable
'% 12) Ohio Scientific Nothing user microprogrammable
% é 13) Perkin-Elmer See Table B-2
i 14) Prime Computer Inc. Only limited information available
: % 15) Rolm Machine too small; C.S. too small
| % 16) Sperry Univac See Table B-2

fi 17) Systems Engineering Lab See Table B-2

B
e e P M L vt

B-4

000 P¢
SOM o {021 $81J3S Z¢ gl
s8A ¥ ¥ZeL'ndd %w.wa € oA 0t) v 009 4 Buisesuibu3 sua)sAs
oN 0o S o0y 1 sa R 008-LLA
N8zl ‘ndd 000 ‘cc$ 0st 8 ol 009 91 seaun Kisads
00¢ V¢
) . (04o1Ww) 009-LLA
S3A v Nee'ndo 005 ._N s S9A 061 9 o 099 a semun-Asads
008 91$
. N (0121w) (SU o¥e) . V249
0g1 : NeE /W0
SaA € SOM 000 ‘9zt 65 5 0t
Sor N5 $ A o8 Aocwm 9l 8 ejepoueN
. € 6l 040 €0 13pOW
S0A 69 szenay O 3 S0 082 i %2 00 9 9 jona)
002 018} ljamAauoy
$°9 %..w 'L oA 052 o NSt 3 000t
, : 0s€ 91 1828, ['E]
N 4] AeeNndd o5z ‘11s] ve plexdeqd RBajmaH
(0Jo1w) 000S
N N VN VN VN N gl 2 a2 0se % v ERW
Jyusidg jeyibig
SoM %-mlmﬁl . mu (021W) SOMIT 08L/TL XVA
N o1 %9214 g0 gt v A 0L % | ('s*2 %) 006 ¢t wouidinby eybig
002 1§ '
SOM Py o) SOM AT 0SL/TL XVA
SoA %o |wungd g s9A 0L ® | ('s°2 %9 008 % yewdinbg [eyibig
002 O (010w} WOldd 32 052 asdyja3
(LA | !
A o neeL .wwﬁ %.M.wmw a A 002 % SOM NI 008 9 jelauag ejeq
. 996 €2 0o 06 1904
gy L] , (0401w) _ y 81 420)
oe . 992 S8A 891 b 0 91 *dao 0J3u0
OoN NZEND 06 ‘61 2t 009 0 ejeq |ouo)
005 €8 (0Jo1u4 319e9)
oN 8 ayoed 000 ¢l L SOA a8 .L e V_N. wm 91 Egsﬂm
NS21Ndd 00S°Ls
Nl Lvd (SN) sus | Auovava | 8 (s118)
AIVaIaNyd 1502 ONILVY AUVAIONYI
¥3d 1509 JWIL HLONTY Q¥OM WL HIONTT NIHOVW
WNIZ [BONVWHO¥3d ONVWHO3d ANVNIWITEYd | 1942 QHoM XYW | T0A9 QoM
JYOLS T0YINOD JYOLS NIV

SOILSIYILIVIVHI ¥3INJWOD TIEVWWVYEI0UJOHDIW “2-8 18Vl

- R e it

T SO QR T £ T T % T I TR
R A N DT AL

B-5

7

RS

.-

it a g sk

PRI Ok ST SRINIMCE Sy I SENPTR IR

V. Computer Performance Analyses

Each computer was then examined to determine whether or not it would meet
the requirements determined by ﬁhe study done on the QM/1 using the NASA
Langley Research Center gate-level emulation algorithm. All machines met both
the 32K main store requirement as well as the 1K control store requirement.
The following analyses discuss the operation of each machine in relation to

Requirements 1, 2, and 3.

1.0 Burroughs BL800 or BL900 Series

In this computer cache memory (2K words) is used as control store; it is
possible to store all of the microcode in the cache memory. A pipelined
processor permits fetching, decoding, and executing microinstructions to be
performed separately and concurrently thus compensating for the limited
capability of the 16-bit microcode. Memory addressing at the hardware and
microcode level is accomplished through a 24-bit field address register that
can directly address 16,777,215 bits as though they were a continuoﬁs string.
Up to 24 bits can be processed in one operation taking 167 ns. Optional port
interchange enables independent rather than processor-dependent access to main
store by such devices as the multi-line data communications control. The
18-bit A register contains the absolute "S" or Main Memory address of the
microinstruction to be executed.

This machine would be a suitable candidate.

2.0 Control Data Cyber 18

The CDC Cyber 18 was designed to emulate the CDC 1700 Series. The
microprocessor contains 2K to 4K of 32-bit user programmable microcode. One
type of micro memory consists of 512 words of read/write memory and/or 1K
words of read only memory; the other type contains 2K of read/write memory.
Each 32-bit microinstruction is divided into five main sections each
performing a different operation in parallel with the others. The
microprocessor controls the machine at all times. The process of decoding a
macroword in main store determines the address of the micro routine which 1is

called.

BRI S LRI LI

v
Lo n e m e f B i

S it

N

T ' S e L s
g S D e e
SRR PCCRALIPINSAS 4ot SR L PLLMEEIL A 8

g

e

RTINS PRI

The read/write random access memory (RAM) can either be loaded from an
external device or data can be written into micro memory under control of the
micro program.

Since this machine does have sufficient control store of pérallel
microcode and uses a vector mechanism to transfer control from main store to

micro store it would be a candidate.

3.0 Data General Eclipse

The control store of the Data General Eclipse contains 2K 56-bit words of
parallel microcode. Each microinstruction is divided into 15 micro fields
which can be grouped accordihg to the purpose they serve. A word in confrol
store is addressed by the 12-bit output of the state change logic which is
determined by the contents of the True Address bus or the False address
field. In order to start main memory the CPU places an address on the logical
address (LA) bus and issues a start signal to memory. Only the module
containing the memory location addressed responds to the signal.
here is a microassembler available to enable the user to write
microprograms in symbolic form and assemble them to produce a binary object
file. The microloader is then used to load the object files.

This machine contains the vector mechanism to address the microcode and

has flexible, parallel microcode so it would be a candidate.

c

|
:
d
By
4

4.0 DEC - VAX 11/750

The VAX 11/750 contains 6K of 80-bit microcode. A single microinstruction
can perform many operations in parallel. The VAX 11/750 was designed as an
emulator for the VAX architecture and contains 1K of user control store.
Emulation starts with one micro-~rder called the BUT/IRDL. This signals the
beginning of the next VAX machine instruction. In'the micro-code which
emulates each VAX instruction, this micro-order is present in the last
microinstruction. Access to the user control store is by the opcode called
"EC" in the VAX instruction stream.- This opcode results in a branch to a
location in user control store. From this point on, user microcode has
control of the micromachine. Control can then be returned to the VAX
emulation by means of the BUT/IRDl micro-order. i

There are a number of features which support user microprogramming; the
data path which includes 18 general purpose 32-bit scratch pad registers, 3 of
which have ports to both the RBUS and the MBUS; the super rotator, which
allows very efficient (in hardware) bit picking operations; and a flexible
ALU. The microsequencer supports general microprogramming in three important
ways; conditional branching, loop comtrol, and subroutine control. The VAX
11/750 has six independent flag bits, four of which are always available for
user microprogramming and two of which are conditionally available. There is
a 5-bit step counter which can be initialized to any arbitrary value
(0 £ X € 30). For subroutine control, a l6-deep microstack is available for
nested subroutine calls.

This computer does have the required horizontal microcode as well as an
opcode resulting in a branch to user control store so would be a good

candidate.

5.0 DEC - VAX 11/780

The VAX 11/780 contains 1K of 96-bit user control store which is available
primarily for augmenting the speed and power of the basic machine. It is,
however, possible to access 4K of ROM containing the operation and sequencing
of the central processing unit. The architecture and operaéion of the VAX
11/780 is similar to the VAX 11/750 as far as the requirements of this
contract are concerned.

This machine would be a good candidate.

6.0 EigiCal Scientific META 4

This machine is designed to be an adjunct processor to a main CPU. One
possible application is as an I/0 processor. The microcode instruction set is
very structured, 32 bits long. Typical predefined instructions include load
from control store, move register to register, etc. Control store size is
limited. Microcode can also read from '"main store'" via a request, wait
protocol.

Microcode operation is not started via a vectored operation and in
general, this "microprogrammable" machine is typical of a mini computer
without microprogrammability.

This computer will not provide the capabilities necessary for our
purposes. Microcode execution is not started via an opcode type operation,
necessitating bit decoding in the implementation of the algorithm. The
machine does not have ready access to the larger main store which would be
necessary to hold gate tables in the algorithm. Finally, the instruction set
looks like a mini computer instruction se- and is not flexible enough to do

%) T G M
Ll v

7.0 Hewlett Packard 1000 E/F Series

The HP 1000 E/F Series has 50K of user addressable 24-bit microcode in
control store with access to 12 scratch pad registers. There are four word
types of microcode with up to five micro-orders each. Each micro-order
defines one or more operations to be performed by the computer.

The control processor, part of the CPU, is always in control of the
computer, and the base set microroutines cause the read operations to occur
for all instructions and data from main memory. All 16-bit instructions are

placed in the Instruction Register (IR) and decoded. The process of decoding

" the IR bits determines which control memory address (which microprogram) is

called by the instruction received from main memory. Control memory module
selection is determined by the value of bits 8 through 4 in the Instruction
Register. These bits help determine the address of branches in the control

memory base set Primary Mapping Table, which in turn directs a branch to the
desired module.

O

KOSP4 BT LH e RAVATPE

There is a micro programming support software paékage consisting of the
following:

. RTE Microassembler Program

. RTE Microassembler Cross-Reference Generator Program

. RTE Microdebug Editor Program

. RTE Microdebug Editor Subroutine

. RTE Driver DVR36

. WCS I/0 Utility Routine WLOAD

. PROM Tape Generator Program

The microcode may be loaded into writable control store (WCS) modules or
may be permanently fused in programmable read-only memory (PROM) chips.
This machine contains horizontal microcode as well as the necessary vector

mechanism so would be a good candidate.

8.0 Honeywell Level 6

The Honeywell Level 6 contains up to 2K 64-bit words in its writable
control store. Each 64-bit word is divided into four 16-bit segments each of
which can be loaded with a separate instruction. Thus, one word may perform
four parallel operations. Control is transferred from the CPU to the writable
control store by causing the CPU to issue a megabus cycle (1/0 write)
addressed to the WCS. This operation is performed by the native firmware
whenever the first word of an instruction lies in the range 0080 hexadecimal
through OOBF hexadecimal (64 bits). The location to which control is
transferred is one of the first 16 locations in the WCS; the specific location
is identified by the least significant hexadecimal digit of the imstruction
word.

There is a WCS assembler available to assemble firmware routines as well
as a loader to load the assembled routines into the WCS. A microcode analyzer
is available to selectively display pertinent CPU and WCS information for
debugging microprograms.

Due to the horizontal microcode and the vectoring effect transferring

control from the CPU to the microcode, this machine would be a candidate.

B-10

g
4
2
A
'i‘f"’
3

'3

b

Lidhied .

v A
7' e o R

9.0 Nanodata QM/1

The Nanodata QM/1l is unique in that it is specifically designed to emulate
other computers. There are two levels of microprogramming with the lower
level called nanoprogramming. The top level microprogram is an 18-bit
vertical microcode having many of the characteristics of an assembly
language. The lowest level microcode is a 360-bit horizontal word (144 bits
of which are active at any one time) which interprets the higher level
microcode. The identification of the nanoword which interprets a'given
microinstruction is determined by 7 bits in the 18-bit microword itself and a
3 bit page indicator in a CPU store register, giving a total of 10 bits of
address to cover the 1024 words of nanostore.

The control store limit is 40K words. For the Langley algorithm, the
algdrithm would be coded in nanocode, using control store to provide the
vector into the proper nanoword and to hold the gate state information. Based
on its architecture and the actual implementation of the Langley algorithm for

the QM/1 under the feasibility study, the QM/l is a suitable candidate.

10.0 Perkin Elmer 3320

The Perkin Elmer 3320 contains 2K 32-bit words of writable control store.

'WCS is addressable through ROM location counter (RLC). There are four

assembly level instructions which enable the user to write into WCS, read from
WCS, and transfer control to WCS resident microcode. Unfortunately the 2K
words of the WCS serve as a supplement to the fixed control store; the user
cannot delete or modify user level instructions or machine features located in
the ROM control store. If an operation does not exist in ROM, it c;nnot be
used in WCS. A new emulator cannot be created in WCS; the user can only add

to the existing one. For this reason, this machine would not be a suitable

candidate.

11.0 Sperry Univac V77-800

The Sperry Univac contains 2K of 48 bit microcode in writable control
store (WCS) with space for 1K 48-bit ROM storage. Each microword executes

multiple operations. The WCS acts as an extension of the processor control
store.

B-11

cees S tziaadl

The WCS contains a decoder control store, a central control store (CCS),
and an I/0 control store. The decoder control store consists of two 16-word
by 16-bit memory arrays with associated logic that decodes main memory
instructions into a 9-bit address which is applied to the CCS. Addressing for
the 64-bit microinstruction is provided by the 9-bit address from either the
processor, decoder control store, or subroutine stack.

The microcode is input as a series of source statements via a terminal or
card reader using the operating system VORTEX II or SUMMIT. The
Microassembler, MIDAS, is then used to transform these statements to object
code. The object code is then loaded into WCS using the microutility, MIUTIL.

This machine does contain horizontal microcode as well as the necessary
vector mechanism to control store and would be a viable candidate.

The architecture of the V77-600 is the same except that there are 4K 64

bits of WCS. Thus this machine would also be a candidate.

12.0 Systems Engineering Laboratories 32/70 Series

The SEL 32 Series contains 4K 64 bit high speed Random Access Memory (RAM)
as a physical extension of Control Store (CROM). The microinstructions
contained in WCS allow parallel operations within the execution timing of a
single instruction.

The writable control store (WCS) may be used as a CROM extension in the
host computer, or it may be used with the Development Support System (Dpss),
residing in the DSS Test Stand. The CROM takes an instruction from Main
Memory and stores it in a 32-bit internal register (Il). An appropriate
microprogram is executed and the contents of register Il are moved to register
10 (a 32-bit register). The CROM entry point is determined by a decode of the
contents of register I0. The CROM contains a series of read only memories
(ROMs) which contain the decode and vector tables within CROM to the
microprogrammed routines that operaté the computer.

Entry into the WCS from software is accomplished using the JUMP WCS
Macro-Assembler instruction. This instruction allows the user to jump to any
of the first 64 locations in WCS where vector addresses (in microcode) are
stored, which address routines within the WCS.

The writing of WCS is accomplished using the WRITE WCS Macro- Instruction.
The reading of WCS is accomplished using the READ WCS Macro-Instruction.

B-12

Rl
K
3
3
3

" Since this machine does have horizontal microcode and does have the vector

mechanism from main memory to control store it would be a suitable candidate.

In addition to the analyses that were done to determine whether each
computer met the requirements, an algorithm was used to rank the computers
with respect to those characteristics necessary to the solution of the

. 1 . . .
gate-level algorithm . The following equation was examined then altered to

better fit the algorithm requirements:

10'? [L-7) (D) (WF)Ji

p= (32,000 (36-7)]"
[te - £1/d
where
pP= the computing power in bits per second
L= the word length in bits
T= the total number of words in memory

WF= 1 for fixed word length memory
2 for variable word length mehory

tc= the time in microseconds for the CPU to perform one million

operations

/0" the time the CPU sits idle waiting for I/0 to take place

1 Knight, Kenneth E.: Changes in Computer Performance, Datamation, vol. 12,
do. 9, pp. 40-54, September 1966.

~

B-13

PRIS '

remiz

P
7
e

]

B

The above equation was altered to include only those parameters relevant to

the implementation of the NASA LRC gate-level emulation:

10'? [a-n w al?
[(32,000) (36-7)) /2
[2 (cs) + (m)]
3

Pl

where
CS= control store cycle time in microseconds
M= main memory cycle time in microseconds

P= a measure of the bits processed based on a weighted average cycle time

A waighted average of the control store cycle time and the memory cycle time
was chosen as the control store is accessed more frequently than the main
memory so its access time should carry more weight in analyses of the overall
performance.

The measurement P' is not meant to be a direct measurement of the power of
each machine but more of a relative measurement of performance to aid in
choosing the computer which best fills the requirements of this contract.

The value for P' for each computer was then scaled to fall between 1 and
100 in order to more easily rank the performances. These numbers appear in
Table A-2 under the heading "Performance Rating'. The value for the
performance rating was then divided by the cost of the CPU with minimum memory
(at least 32K words) plus control store to give a value for performance per
dollar. These values were then scaled to fall between 1 and 100 to give each
candidate a "Performance per Cost Rating'.

The prices quoted in Table B-2 represent only the price of the CPU with a
minimum of memory plus the control store. They do not reflect the price of

interfaces, consoles, printers, etc. They should be used only as a general

basis for cost comparison.

B-14

' .
:
K
3
Y
;
4
;%
2
.'."l
A
e
tid
X

o

kit

VI. Conclusion

The machines which have been recommended as final candidates were chosen
more on a basis of performance than cost due to the stringent requirements for
supporting the gate-level algorithm.

The performance of the QM/l is far superior to any of the other machines
studied. There are a number of machines that compete for second place such as
the DEC VAX 11/750, DEC VAX 11/780, Honeywell Level 6 Model 43, Systems
Engineering Lab 32 Series, Data General Eclrose, Sperry Univac V77-600, and
Sperry Univac V77-800. Comparing the two VAX machines, one would eliminate
the VAX 11/780 on basis of cost. The Univac V77-800 could be eliminated for
the same reason. Any of the following machines would be good second choices:

1) DEC VAX 11/750

2) Honeywell Level 6 Model 43

3) SEL 32 Series

4) Univac V77-600

5) Data General

The QM/1 far outperforms those machines in second place and would be the

recommended choice for the emulator portion of the Digital Avonics Design and
Reliability Analyzer.

B-15

Attachment 1
Interim Technical Report

e S T ST R e Y S T

N & - e

R TR

II.

III.

Iv.

VII.

VIII.

Table of Contents

INTRODUCTION

SUMMARY

BASIC ALGORITHM DESCRIPTION WITH PRELIMINARY TIMING ESTIMATE 5

ADDITIONAL FEATURES OF THE ALGORITHM

IMPLEMENTATION OF THE ALGORITHM

CONCLUSIONS

REFERENCES

Appendix A. UNIFORMITY OF GATE TREATMENT

Appendix B. DERIVATION OF EQUATIONS

Appendix C. NANOCODE FOR BEST CASE TIMING ESTIMATE

24

29

37

49

51

A-1 thru A-6

B-1 thru B-11

C-1 thru C-7

I. INTRODUCTION

This interim technical report details the results of Martin
Marietta's implementation on the Nanodata OM/l1 of an algorithm for the
emulation of digital devices at the gate level. The implementation is
intended to prove the feasibility of using emulation technology for
data collection in support of reliability studies of fault tolerant
digital avionics equipment. From the high level point of view, it
is clear that that feasibility depends primarily on the adequacy of the
speed improvements emulation seems to offer over simulation. That is
to say, the most useful measure of the feasibility is the time required
to perform a "sufficient' number of experimental runs to give statistical

significance to the results obtained.

The specific algorithm which we implemented was developed by the
NASA Langley Research Center. The algorithm has two significant factors
inherent in its use. First, it doesn'tirequire examination of every gate
in the system and second, it allows treatment of every gate in the same

manner, regardless of gate type. The algorithm is described in detail

in sections III, IV, V and Appendix A.

To provide a basis for the actual timing figures, Section III
provides a discussion of the basic operations involved in the algorithm
and the basic timing considerations in the QM/1 to try to determine a
"best case" sloﬁadown factor for the algori;hm (i.e., an indication of
the best we can do in terms of speed). This section contains a brief,
high level overview of the philosophy of the algorithm and provides
an introduction to the more complex discussion in Section IV.

Section V gives details of our implementation including considerations

of memory requirements and system size. The timing results are detailed
in Section VI and include graphs to determine predicted performance

for systems of varying sizes. Section VII presents our conclusions
based on the implementation and timing studies. Appendix A contains

the rationale and basis for uniformity of gate treatment, Appendix B
contains the derivation of the timing equations used forvprojection,

and Appendix C contains the nanocode for the "best case" timing

analysis.

I1. SUMMARY

This report details the results and conclusions of Martin Marietta's
implementation of the NASA Langley Research Center's gate level emulation
algorithm on the Nanodata QM/1 computer. The implementation was done
to determine the applicability of emulation technology to reliability
analysis of digital avionics systems. This determination has focused
primarily on the speed aspects of the emulation and the time necessary

to run a sufficient number of sample cases to provide significant results.

The slow-down factor of the emulation is based on four primary

considerations:

1. The system size (number of gates);

2. The average percentage of gates changing value in a
machine cycle;

3. The average-fan-out of the gates in the system

4, The machine cycle time of the system under study.

Using a system size of 2000 gates, and assuming 5% of the gates change
value, with an average gate fan-out of 2.0, and a machine cycle time
of sps, the actual slow down factor based on the implementation was
found to be 1200:1. This is compared to a best possible slow-down

of 600:1. The 1200:1 figure means that 10,000 samples of 0.1 seconds

real time per sample would take 17.2 days of emulation processing,

a span which is entirely reasonable in relative to the kinds of numbers

seenin previous studies (i.e.[3])-

The largest control-store resident system possible under the same

constraints (6000 gates) also exhibits a reasonable slow-down factor

Crsa 4 2 St

i e e

of 3500:1. However, in attempting to extend the emulation capability
beyond 6000 gates, we found that the processing time is overshadowed
by the time it takes to load data into control-store, and hence this

mode of operation is not feasible.

The basic conclusion of the report is that gate level emulations
of systems up to 6000 gates is feasible within the constraints imposed

by the architecture of the QM/1.

III. BASIC ALGORITHM DESCRIPTION WITH PRELIMINARY TIMING ESTIMATE

In our discussions with NASA Langley Research Center Personnel,
we have been given several estimates of slow—down factor expected by
them in the QM/1 implementation of their algorithm. These have ranged
from.a low of 300:1 to a higher range of 500-600:1. From our imple-
mentation of the algorithm, these figures seemed very optimistic. The
following discussion is an attempt to define a possible, reasonable lower
bound on the slow-down factor, taking into account QM/l and nanocode

realities as well as the operations necessary because of the algorithm.

For the analysis which follows, we assume that the reader is
familiar with the basics of the QM/1 and its nanocode. We further
assume that the reader is familiar with the algorithm implemented
(described briefly below). Please note that in these assumptions we
do not require a working knowledge of either item, only a familiarity
to the extent that allows an understanding of the terms involved. For
example, most of our discussion will be based on the basic time cycle
in the Q/1, the T period (80 ms). It is sufficient for the
reader to realize what a T-period is and what it means in relation to

execution of a nanoword.

The NASA LRC algorithm is conceptually straightforward. There is
one item requiring acceptance on the reader's part. The algorithm as
defined allows all gates of any type (AND, OR, NAND, NOR,XOR, etc.) to

be treated identically after initialization of the value of the gate

and a quantity called CNT (count) which relates to the number of inputs.

The algorithm has a major and a.minor lbop as shown in Figure III-1.

B
A4

EQNPWRT

Syt

PARA.
e O

s i

PRYORTIEN LBV R

Lk A

S
P S

f T

Read Next X-Gate Vector

A

Re-1Initiali
Qoeve For Yes /' £nd of Queue ? >
Next Cycle AN

No

A

Examine Next
Output Gate 2)

b

for This X

v
Does Z Gate Value Change No
As A Resuit Of NewX Value?,

Yes

A
Queue This Z Gate
As An X Gate For
Processing In A Future
‘Cycle,

No

Is This The Last
Output For This X 7

Yos

3

Figure 111-1 ALGORITHM OVERVIEW

AR RN UR AR AT L. PARA/CINON PLRRCURE SR ACAES SR S

o
¥

YRS

The driver on the major loop is a queue consisting of those gates whose
value has changed. The minor loop is comprised of examining each gate
which is connected to the outputof the changed gate to see if the
change affects the value of the output gate. For example, we will use
the 3 gates shown in Figure III-@. Suppose the value of gate A has

changed (the mechanism for this is described later). The algorithm

| A {De— :

Figure f11-2

c

then specifies that gates B and C must be examined to determine if the
change in the value of A will cause a change in the value of either

B or C. This is determined by updating the CNT quantity for the output
gate (B or C) based on the new value of the input (A) and determining
if CNT, by virtue of that update, transitions into or out of zero (see
Appendix A for an explanation of this mechanism). Transition of CNT
for the output gate into or out of zero indicates that the value of the
output gate (B or C) changes value. If the value of the output gate (B
or C) does not change because of thé input (A) value change, no further
action is necessary. If the value of the output gate (B or C) does
change, the gate is added to the next cycle's changed-value queue (as a

future x-gate) to allow examination of the effects on its outputs.

For brevity in our discussion, we will term the changed-value
queue and its processing ''the x queue" and "X processing". We will
similarly term the output gate processing to be "z processing'". The

action of the algorithm then causes a z whose value changes to become

an x for the next "cycle" (for its outputs to be examined). In this
case, a "cycle" represents the propagation of the signal through one
logic level; and a "machine cycle' would be completed when the x queue
becomes empty (i.e., when the logic circuit has reacted to changed

inputs and the circuit has settled to quiescent values).

There are several benefits derived from the algorithm. For x

processing, only those gates whose values change need to be examined.

A T e e e e

e

P DN IRV U

Further, only the outputs of those gates must be known. This contrasts
with the typical "brute force" algorithm which requires examination of

each gate and subsequent examination of all of its inputs to determine

R Fep

its value.

For the analysis below, the only way a gate is put on the x queue
is by virtue .of its having been examined during z processing and found
to have changed value. We will term this the non-null case of z proces-

sing. Thus we have the following relationship
x gates processed = # non-null z gates processed @))

This ignores the mechanism for starting the cycle, so we will cover
that later. The null z process is the other case for z's and repre-

sents basically no operation (i.e., no action necessary since the

gate doesn't change value).

To provide some quantitative values for our discussion we need to
make some assumptions- concerning the system being modeled at the gafe
level. For example, we need to fix the size of the system. This is due
to the fact that the slow-down factor is directly proportional to the system

size (actually the proportionality is based on the number of gates whose

bR el =

Y
R AACHSPRY

L N i W e

LS

R R

il 2o

values change, but this is related to system size). Gate proces-
sing must proceed sequentially, while the modeled machine cycle

time is fixed. Therefore, we based our analysis on the following

assumptions:

1. The system under consideration contains 2000 gates;

2. Only 5% of the gates will change value in any machine
cycle (x processing),

3. The average gate fan-out is 2 (there are 2 z's per each x);

4, The basic machine cycle time of the emulated system is O.Bps,

For discussion purposes, any further reference to cycle, cycle time or

2 erm I AT AT e 1. 3 b -4
nodeled machine cycle time and r

-
-
(1)

the time for the logic circuit in the modeled machine to react com—

pletely to a change in input. This represents the real time against which

the algorithm is measured.

A second set of assumptions is necessary for this analysis. This
second set relates to the data structure upon which the algorithm

is built. For this discussion we will assume the following structure

(shown pictorially in Figure III-3).

1. Each gate is characterized by a gate info word, This word
contéins the gate value, CNT and various other information.

2. The X queue is a linked list with the link word following the
gate info word in memory. The link word contains the address

of the next gate info word in the queue. We will call the

link word "LINK".

BRI TSI T SR FALE W, ISRV I S S JOE VUL DS P

Address
Address Of Next Gate Address Of Qutput List
" Gate Info Word In Queue (LINK) (CLINK)
M+3 Gate Info Word LINK CLINK
M+
C M+9 ™ N
M+12 M+9)
M+5
M+18 M+12) (N+2)
Output List Address
] Address For 1st Output |
. M+15)
MLINK M+18
Address For 2nd Output | o)
/ e
Address For 1st Output | N+2
Address For 2nd Output | N+3

Figure 111 -3 Gate Queueing Structure

10

i

e

R PR VRIR DUTHERSE SFOXTO> 0 =

a T revide il W

ratimazihtiad

; Py, L ot
L ma ATl A, Zaw e’ o ta. £ S

.. W 9%
. !

3. The address of the first gate info word in the queue is
kept in a local store register designated MLINK,

4. The output gate addresses are kept in a separate section
of control store in consecutive order. That is, the
address of the gate info word for output 2 of gate y follows
immediately the address of the gate info word for output 1
of gate y.

5. The address of the output list for each gate is contained in

a word following the queue link word (LINK). We will call

this word "CLINK."

Frem the diagram of Figure III-3, we see the gate whose info word is
located at address mt+9 has two outputs. The first output is the gate
whose info word is located at address mt15 and the second is the gate
whose info word is located at address m+6. This is found by following
the CLINK to address n to address mtl5 and then following address n+l
to address mt6. The X queue in that figure goes from the‘gate of

address m+18 (due to MLINK) to m+l12 (LINK) to m+9 (LINK) to m (LINK),

The data structure just presented represents, in a somewhat simplified

manner, the data structure used in our actual implementation. The

specifics of the implemented algorithm are covered in more detail

. in Section V.

Given these assumptions concerning system size, the definition
of the algorithm and the structure of the data in QM/l1 control store,
we can now begin to analyze the potential slow-down factors based
on those assumptions. dne further assumption which is inherent

in the following analysis is that the decisions concerning

11

the actions to be taken in z processing are made in a highly parallel

'} ' fashion using the QM/1 microinstruction execution feature [1:66] and
Tocal store register R31. Using this feature, testing of bits in the
gate info word is done quickly in a highly parallel fashion requiring

a very small amount of time.

For the first cut estimate of slow-down, we will ignore the time
necessary for x processing and concentrate on what is required for z
processing. However, to determine the number of gates examined in
z processing, we must use system assumptions 1 and 2 to determine the

number of x's processed and then multiply that by the 2 from system

. Ty e
FRPDIETIN SROL IS SRR WL IR RS

| assumption 3 to give us the total number of output gates examined

(i.e., 2 outputs per x = total z's). Therefore we have the following:

o # x gates processed = (system size) X (X system changing)

2000 gates X 5%

100 gates : (2)

z gates processed = # x gates processed X fan-out of x gates

100 gates X 2

200 gates (3)

Now using equation (1), we find the number of non-null z cases.

Equation (1) stated
x gates processed = # non-null z gates processed (1)

Therefore, we have

non-null z gates processed = # x gates processed

= 100 gates (4)

13

Which means that of the 200 z gates we have, half are the non-null
case and the other half are the null case. Now that we have fixed
the amount of processing to be done, we need to get an estimate of
the time necessary to do each case. We will consider the null case
first. The shortest nanoword in the QM/1 which does not branch to

itself looks like [1:58]:

NNy RN

Tn: READ NS (not stretched)
: Tn+l: GATE NS (not stretched)
3 or
p Tn: STRETCH, READ NS, GATE NS

We need to explain our notation in the above two examples. The Tx to the

left indicates the T-step (not T-period which is fixed, but T-step which may be

either 1 or 2 T-periods long). In the first case, the T-steps are not
stretched which means they are each 1 T-period long. In the second,
the T-step is stretched indicating it is 2 T-periods long. For those

more familiar with nanocode notation, this can be shown thus:

X. .. READ NS

X . . GATE NS

Qr

S, .. READ NS, GATE NS.

The net result is that the null z processing requires, in the best

possible case, 2 T-periods.

¥
ki
i
B
{
]
B
Cod
B
4
.
B
'
3
4

% f

BRI VAL A AR S)

14

For the non-null case, we need to do more in the nanoword than
simply branch out. Let us assume that we can do all necessary processing
in one nanoword. To determine the length of that nanoword let us
examine the length of a set of nanéwords. The set of MULTI nanowords,

consisting of 124 words, represent 669 T-periods. This works out to:

T-periods/nanoword = 669 T-periods/124 nanowords

5.39 T-periods/nanoword (5

This result fits in well with intuition in which we realize that the
case where none of the T-steps in a nanoword are stretched is relatively
rare, and that in most words observed, at least ome and occasionally

2 of the T-steps are stretched. Thus, without considering the exact
operations to be performed, we will use a 5.4 T-periods/manoword figure

for the non-null z processing nanoword,

Now we have the information necessary to calculate the z processing
and the absolute best case slow down factor. The time required is

given by

null' z processing = # null z gates X 2 T/gate

200 X 2T

=1200T;

non-null z processing = # non-null z gates X 5.4 T/gate

100 X 5.4T

540T;

KN

-
¥
¥

S

. _;]
s
ol
Lok
A
A
]

GG cae i

~ B T T A

L

TR
IR RNY

15

total z processing

null z processing + non-null z processing

200T + 540T

740T.

To translate this to understandable terms, we use the 80ns/T-period

conversion to get:

time = 740T X 80ns/T

59200ns = 59.3’5

For our given machine cycle time of 0.}us (system assumption 4),

the slow-down factor is given by:

slow—-down factor actual time

machine time
59.24s
_O.Iﬂs

592:1

This 600:1 factor is close to the NASA LRC expected slow-down in
their 500-600:1 estimate. What is significant about this figure is
that our judgment about 600:1, which appeared to be an optimistic
figure is proven to be true. This slow~-down factor is based solely
on z processing, does not include x processing at all, and in additionm,

does not include most of the processing necessary for z's.

Let us look further into the x processing. This processing

must consist minimally of:

1) Reading in the x gate info word from control store;

2) Reading in the address of the output list (CLINK) from control

store;

R ceE N
DI I S PEPPRILE PP A pa B, e 0.

Laae Do

L el Y Syl
N L B B A i Vi

16

3) Reading in the address of the first output gate (z);
4) Reading in the gate info word of the first output gate (z);
5) Reading in the address of the second output gate (z);

6) Reading in the gate info word of the second output gate (z).

Steps 3-6 depend on there being 2 outputs per gate. Referring back to
Figure III-3, and using the gate whose info word is at mt9 as the x
gate, step 1 reads the info word from address mt+9 into a local store
register. Step 2 rea@s the CLINK word at address mtll into a 1o§al
store register. This register contains the address n. Step 3 reads
the contents of address n into another local store register. This
register now contains the address (mt+15) of the first output gate.

Step 4 reads the gate info word for the gate at location mt+l5 into a
register. Step 5 reads the contents of location n+l (mw+6) into a
register. Finally step 6 reads the gate info word for the second output
into a register. fhus the minimal x processing consists of steps 1-6.
Now to estimate the timing on this, assuming best possible case, we
will consider the time necessary to do the 6 reads. We assume address
formation takes no time. Based on the timing constraints for control
store [1:36], if we set up for the control store read in Tn, (assuming
all T-steps are non-stretched and correspond to 1 T-period) the READ

CS cannot legally occur until Tn+2. In the best case, we can also set
up for a new read of control store in Tnt+2, which produces the timing

sequence below:

T1 set up for read of x gate info word

T -

T read x gate info word, set up for read of CLINK

. .
b NEL S ORI SR B el

17

T read CLINK, set up for read of first output address

5

T

T7 read first output address, set up for read of first z
gate info word

Tg

T9 read first z gate info word, set up for read of second
z address
10
'1‘11 read second z address, set up for read of second z
info word
T12

T13 read second z info word.

Thus, the best case for x processing is 13 T-periods per x. Now let us
examine the z processing. In the non-null case, we used one nanoword
to do the setting of bits, etc., necessary in processing a z, We now
need to add in the time necessary to link the gate iﬁto the MLINK,

LINK queue. A measure of this task can be gleaned from the MULTI
instruction ENQ. ENQ is an enqueue instruction designed for creating
linked lists., It takes 27 T-periods [2:60]. We could possibly do better
by using an ST (store) instruction of MLINK into the new gate's LINK
and then an MVR (move register) of the new g#te's address into MLINK,
This approach requires 7T for the store aﬁd 5T for the MVR [2:54-55]
for a total of 12T. We might further assume that custom nanocode could
speed this up by 1/3 for a time expenditure of 8T. (8T is very close
to the time necessary for this operation in the actual implementation.)
Based on these new numbers, we can calculate a new lower bound on

slow-down factor:

st

' Gl b .
a1 e e e U T B e L D e

% SFREANIA

. St L.
Se T e T
PRSI, PR SN

18

x processing time = # x gates processed X 13T/x gate

100 gates Xv13T/gatei

1300T ;

null z processing time = # null z gates X 2T/gate

100 gates X 2T/gate

200T ;

non-null z processing time = # non-null z gates X (5.4T/gate

+ 8T/gate)

100 gates X 13.4 T/gate

1340T;

1300T + 200T + 1340T

total processing time

2840T.

This translates to:

2840T x 80ns/T

time

227200ns = 227.%“8

slow-down factor

227‘2Es
O'Hﬂs

2272:1 slow down (for a .aAs machine cycle)

This figure is much more realistic than the 600:1 figure obtained
before, but it is important to note that our inclusion of T-periods for
processing in this analysis does mot begin to approach what is necessary

in the actual algorithm.

19

i We propose to iterate through the calculations one final time,
developing motivations for additions to the time estimates we have
K presented and ultimately defining a realistic best case estimate

of the time required for performance of the algorithm.

To begin the analysis for this last iteration, we will modify
somewhat the allocation of timing between the x and z processing. By
this, we mean that the stepping down the output list and reading of the
output gate info word is not really a function of x processing but
belongs more properly in z processing. We will shift it into z pro-
cessing for one primary reason. The x processing pipelined read of
the outputs in the last analysis is not practical and really cannot

be done in that fashion. The practical implementation is: read of

one output; process the output; then loop back and read the next
output. So, in the first step, we have taken 10 T-periods out of the
x processing. (Time for read of CLINK and each of the output addresses
and info words.) At this point x processing consists of reading

only the x gate info word and requires 3 T-periods per gate.

As you will remember, the 3T estimate assumed that address
formation took no time. In actual fact, if we assume that the address
is in a local store register, address formation only takes the time
necessary to set up the busses to use that as the control-store address.
This adds 1 T-period. Thus to read the gate info word for an x requires

4 T-periods.

R
-4
A
N
a4

LAl LA sl vetsE

PR D Y

e
»C

R A

o e L
(RSN SCIL ELENENECE S R

20

The next thing we need to do for x processing is to use the QM/1
micro-instruction execution capability to do a multi-way branch based
on the data in the info word. Since we want to branch on more than
the 7 bits available in the QM/1 local store register 31 C-field, we
need some extra processing to set up the proper address. This pro-—
cessing, plus the multi-way branch itself, requires 5 additional T-
periods. (The minimum nanocode segments are given in Appendix C:)
Thus the basic x processing set up takes 9 T-periods. Based on our
implementation, the actual x processing takes from 2 T-periods (for
a gate not properly queued; i.e., no action necessary) to 9 T-periods
for a gate requiring more.complex processing. The time for the most
standard processing (gate normally queued) is 5 T-periods. Thus for each
X: set up, mﬁlti—way branch and x processing takes 9T + 5T = 14T.

The only remaining step is to set up for processing of z's for each
x and the set up (address formation) for processing the next x in the

queue.

The set up for z processing consists of calculating the address
of the CLINK word for this gate (gate info word address +2) then
reading in CLINK to get the address of the output list. This processing
takes 6T. The end of x processing for the current gate consists of
setting up for the next x. This involves calculating the address of
LINK and then reading the value of LINK. This takes 6 T-periods.

Thus, the total x processing is given by:

= + + + +
xtotal xset up xbranch xproc X2 set up xnext
= 4T + 5T + 5T 4+ 6T + 6T
= 26T (6)

xtotal

21

'fé Z processing consists of setting up for the processing of the current
3 .output, doing the actual processing, and doing the preliminary set up

A for processing the next output. The first part consists of reading the
address of the gate info word for this output and then reading the gate
info word itself. This is then followed by the multi-way branch

(similar to the x processing multi-way branch). This operation takes 12T

(see Appendix C).

Actual z processing takes 2T for the null case, and from 5T to 18T for
the non-null case. To this 5-18T we need to add the time necessary to add
this z to the queue. This time is 6T. Thus, for non-null z processing,
using the most common case of 7T for processing plus 6T for the queue

addition, we need 13T. So, for z processing itself we have:

null z processing 2T,

non-null z processing = 7T + 6T = 13T,

Thé final set up for next z is essentially included in the set up
for this z. The only thing that is not done is the'tésting if this
is the last output. We will assume the sign bit in the last output
is set to 1. The time required to do this test is 4T if it is the last
gate and 8T if it is not. (We will use 6T for our figures based on

an average fan-out of 2.) Thus, the total z time is:

z z + z + 2z
total set up process next

= 12T + 2T + 6T (null z)
= 20T (null z) (7
= 12T + 13T + 6T (non-null z)

31T (noﬁ—null z). (8)

2 . 3

SC b N

e
PR

22

We now have all the figures necessarf to calculate best case slow-down.
As an aside, please note that the nanocode given in Appendix C will

not work if put together. The most striking example of the reason for
this is the processing to determine if this z was the last in the output
list. Remember we assumed the sign bit was set. This means that when
we read the gate info word, we would have to clear all sign bits before

the read. This is not accounted for in the nanocode of this example.

There is also no provision for testing the last x in the queue. But
as a best case timing estimate, these figures define the range of

numbers involved. So, the calculation of slow-down factor looks like:

x processing time = # x gates processed X 26T

100 gates X 26T

2600T;
null z processing time = # null z gates X 20T
| = 100 gates X 20T
= 2000T;

non-null z gates X 31T

non-null z processing time

100 gates X 31T

3100.

This translates to:

time

(2600T + 2000T + 3100T) X 80ns/T
= 7700T X 80ns/T

= 616000ns = 613‘3.

Thus for a .;“s cycle machine, the slow-down factor is 6160:1.

S med

i

e N AR L

23

In summary, it is obvious that there are several parameters

which determine the slow-down factor for a given case. The parameters

are:

1. system size in total gates;
2. number of gates in system which change value during a

cycle (average). This may be expressed as a percentage

of system size;
3. average fan-out per gate;

4. cycle time of the emulated system,

For our analysis here we assumed that:

1. system size = 2000 gates;
2. percentage of gates changing = 100 gates = 5%;
3. average fan-out = 2

4, cycle time of the emulated system = 0.}‘8.

In the following sections, we present some details of the algorithm

we implemented and the results of our timing studies. Since those
timing studies address a 9.5 cycle time machine (10 times slower than
the machine we assumed here) we can recalculate the slow-down for our
idealized implementation. It then becomes 616:1. Remember that this
does not take into account all of the necessary actions. It is thus
reasonable to expect that the slow down factor for a 5.5 machine to

be best case 600-800:1 and for a .b.s machine to be 6000-8000:1. 1In
summary, for the slower machine, with a smaller system (2000 gates), the

LRC estimate of 500-600:1 is quite optimistic but still a reasonable figure.

~ o
L 4

4
-4
<4
w4
-
ok
R
¢
i
X

e
n

gt L.
F OIS -0

gyt s

B Al s
i sl o Yoda Al SR E

A A A A B e i e e

AR

IV. ADDITIONAL FEATURES OF THE ALGORITHM

The algorithm introduced in the previous section includes additional
elements which allow it to handle the types of situationms expected in
real-world applications. Aside from handling all types of gates in
the same manner, and being able to quickly process gates without having
to review every input of every gate, this approach takes into account
the possibility for double queueing. If two gates share the same
output gate and both change value such that the output gate should
change, they will both independently queue the same gate for processing.
If this happens within a single logic level, it is quite possible that
the common output gate should in fact not be queued at all, since as a
result of both inputs its value should remain the same. To handle
this sort of case,the NASA LRC algorithm includes processing which pre-
vents unnecessaryqueueing, as well as a second set of flags (V2 and.Az)
and a second queue linkage word (LINKZ) which are used as a means of
remembering the necessary data for processing an additional queueing
if in fact one is required. This latter situation arises when double

queueing is spread over two propagation cycles (two logic levels).

An additional feature of this approach is that flip-flop devices
arc treated as ordinary gates with some additional special case con-
siderations. The flag FF is used to<indicate a flip-flop device and
enables the algorithm to handle such a device e%fectively. Involved
in this process is the flag T, which indicates a trigger input for a

flip-flop, requiring a slight variation in treatment.

A list of the variables involved in this algorithm and their usage

is provided in Table IV-1, and a section of the algorithm dealing with

24

R el i

e e R R AT B e

25

double-queueing is detailed in Figure IV-1. It is entered only if during
the normal processing of an output z-gate, that gate's CNT value transi-
tioned into or out of zero. (Thus indicating that this z gate should be
queued for future x gate processing.) The variables of most concern here
are: 1) the "properly queueé" flag Al’ which indicates that a gate is
queued for x processing, and when needed for double queueing enables

a gate to be '"'dequeued" without actually dequeueing the gate itself;

2) the "cycle queued" flag A3, which remembers in which propagation

cycle (C) this gate was queued for x processing (propagation cycles indi-
cated by C are equivalent to x queue processing cycles, and each repre-
sents the processing of one. logic level of the system); 3) the current
value of the gate Vl; and 4) the linkage variables LINK1 and MLINK

used in the linked-list x queue whose ties between gates define the

course of any given processing cycle.

The variables concerned with the queueing of a gate onto the
99 A4, and LINKZ. Although we imple-

mented the algorithm as given to us, we feel there are some functional

second x queue include V2, A

discrepancies involved in the manner in which these variables are used.
The concept presented here, however, is of more importance than the
details of its design in the algorithm. The need being addressed

here concerns the queueing of gates a second time. (This situation
arises when double queueing occurs over two consecutive propagation
cycles, as discussed briefly above.) The idea is to remember what
the value of the gate is at the time of the second queueing, in

order to correctly process tﬁe gate when its first processing cycle

begins; and to queue the gate properly for a second processing. The

*,

e SR e A e G

s s AR ELAS i DRI R men s ol

SBaieSean <

area of the flow in Figure IV-1 encircled with dashed lines attempts
to accomplish these goals. The flag A4 indicates that the second queue
is employed for this gate; Az is later to become the Al of the second
processing cycle, and indicates that proper queueing has occurred; and
V2 remembers the current newly changed value of the gate. (The second
queue linkage involving LINK2 and MLINK ih the given algorithm does

not work properly when integrated with the normal linkage system using

LINKl.)

These additional features do cause extra overhead in the

execution of the algorithm, but they enable the algorithm to emulate

a wider range of real-world systems and to accommodate all the currently

foreseeable events which occur in gate level emulation.

27

Variable Definition / Usage
Ay "Properly Queued" Flag: Indicates Gate Queued For
X Processing.
i A, A, For Second Queue.
A; "Cycle Queued" Flag: Indicates Value Of C When Gate
Queued For X Processing. i
3 Ay Flag Indicating Gate Queued Onto Second Queue.
b Vi Current Output Value Of This Gate.
Vy Gate Value For Processing Of Second Queue.
4
3 FF Flag Indicating A Flip-Flop Device.
1 | T Flag Indicating A Flip-Flop Trigger.
CLINK Pointer Word Containing The Address Of The Output
1 ~List For Each X Gate.
LINK1 Linked-List Linkage Word Pointing To The Next Gate In
> The Queue (Zero If Last' Word In The Queue).
LINK2 LINK; For Second Queue.
MLINK Pointer To First Gate Of The Next Queue (Each X-Queue
Cycle Starts A New Queue), And Zero If End Of Machine
Cycle. ‘
C Propagation Cycle (X-Queue Cycle) Indicator (Alternates
Value For Each Logic Level Procesed).

TABLE IV-1: Definition Of Variables

e R i

!
iy
t
N
A4
4
4
H
b

Change Gate
Value In 2nd

Queue: Set .

Enter
When CNT Transitions
into Or Out Of Zerg

Vz'Vz

F 3

i
|
|

Yes

Have We_B;n—\

Here Before? <

P

Is This Gate A
Yes /' Fiip-Fiop Device?
N\ FF 1)

D)

28

: Is This Gate Currently
In The Queue? \ N

(Al' 17

JYes

{Ag+ 17

No | “Queue” It Onto

2nd Queue

Set-Up 2nd Queue
Flags: Set Ag- L
Aj- 0, And vz -vl

!

Set-Up 2nd Queue
Linkage To Include
This Gate In The Linked

4

]

“List: Set LINK2 = MLINK
And MLINK = This Gate

Restore This Z Gate
And Continue With <

L _

No Was it Queued During
This Propagation
, Cycle? (A 3= C?)

"Dequeue” it | Yes

/ "Queue” it

Remember Queue
Cycle By Setting
A3-C

A
Compliment "Properly Queued” | _

A 4
Change Gate Value:
SetVy "V,

A 4
No / Is This Gate Still Properly

Next Z In CLINK List
3

1

Compliment Secondary

\ Queveds? (Aj= 1?)
Yes

Fla: St A A ¢

Change Queue Linkage To Include
This Gate In The Linked List

St Ay -4

*Queued Pr I_y" Flag o=

Set LINK] = MLINK And
MLINK * This Gate

ORIGINAL PAGE IS
OE POOR QUALITY

Figure IV-1 Flow Of Double Queueing Logic

29
V. IMPLEMENTATION OF THE ALGORITHM

In implementing the NASA LRC algorithm previously described, we
have used the unique micro-instruction decoding capabilities of the QM-1
as a means of efficiently handling all of the individual flag conditiomns
which arise in the course of normal processing. It is important to
recognize in this algorithm the inherent dependence upon individual
flag-bits and the large amount of processing necessary to handle them
properly. Conventional coding methodology requires these flags to be
tested and manipulated individually (which can be quite burdensome).

A great deal of speed and flexibility can be gained by combining all

D0 el i BB e e 6

of these flag-bits into one n-bit computer word, and subsequently using
y this word as the address of a specific routine in memory written to
handle the exact bit pattern found in that arrangement of flag-bits.
Thus we associate one word of data with each gate in the system, and

we arrange that word so 'that each bit is dedicated for use as a specific

flag. Then when the value of a flag-bit is needed to be known in order

a1

that some. action may be taken, rather than reading each bit and testing
S for one or zero, the entire set of flag-bits is taken together as a
"condition set" and used as the absolute address in nanostore of the
routine which performs the exact actions necessary under the conditions
specified by the flag-bits. In addition, when processing of that gate
changes one of these flags, the appropriate bit of that gate's "info

word" is changed to reflect the latest condition of the flag. This is

very fast and very effective, but it does require a great deal of memory
(in this case, nanostore). For our use, however, this drawback is far

outweighed by the execution speed and flexibility gained.

Figure V-1 gives an overview of the logic used to implement the NASA

LRC algorithm. The boxes'cohtaining an asterisk (*) or asterisks (**) include

y it oo s HELA bt

PR

Ta

Enter

<|s The Z-Queue Empty‘>¥i”—0
LMo
Load Block Which Contains The

Next Gate In Z Queue From MS
Into CS

Process All Gates In This Block
Which Are In The Z Queue 4

!

Get Next X-Gate From The X-Queue

SN TRIEESILRINT VN

sy e

v
PEPRNG Xisy

Is The X-Queue Empty? \ Y
(Is X = MLINK = 07)°
LN

Process This X-Gate (% %)

!

Get Next Output Gate Z-Gate) For This X-Gate

Add This Z-Gate
Into The Z Queue

30

No/ Is This Z-Gate An Element Of The Block \ Yes
Now In Control-Store?

t

Process This
Z-Gate (»)

N

)

P

//\s This Z-Gate The Last
N /" Output Gate For This X-Gate?

"\ #nd Of CLINK?)

~ JYes

Figure V-1 Overview Of Implementation Logic

Y

RN

PR TORP

R SR
L K e Db

Gl L e
R TEIR WAP R L L S SR

oot gl
IR RARE LSRN USRS

el

Fawaid. Sty S

1

the type of processing described above. Before detailing these however,
it is first appropriate to examine the lay-out of the memory tables

used and the reasoning behind their structure.

Figure V-2 shows the structure of the "blocks'" of gate data which
reside in main-store and are loaded one at a time into control-store |
for processing. (Note that for an all control—stofe resident system
no loading of blocks nor pre-x-cycle z-gate processing is needed.)

In order to handle the most general case of system size and design,

we designed our emulation to handle systems larger than 6000 gates
(which is the largest system under this design to be totally control-
store resident). This is accomplished through the use of the block
structure and the means to keep track of interblock connections as
follows. For each gate there are four 18-bit words which are reserved
for dedicated use. The first word is the "gate info word" containing
the flag-bits (detailed in Figure V-2) and the CNT.counter for this
gate; It is the lower three bits of this word, concatenated with the
upper seven bits of the same word, which comprise ;he 10-bit namostore
address used for branching to the various processing routines as des-
cribed earlier. It is of importance to point out here that the three
bits FF, T, and the "z or x'" flag, are used as a ''manostore page address"
and therefore must be placed into f—register FIDX prior to branching

to any routine. This enables the use of the micro-instruction decoding
faqility of the QM-1, which concatenates the 3-bit page address found
in FIDX with the 7-bit address found in the C-field of local store
register 31, to form a 10-bit absolute nanostore address. Thus the

decoding of all flag-bits for each gate can be done "instantly" by

31

- In The Structure
Shownielon

- =

Gate —— Info LINK LINK CLINK
Number Word 1 2 Address

(See
Below)

am "7 | 3 | 5 | 5

ﬂ,: Addresses

3 A

5 % 71 121 0
Flagbit Used To

U S Indicate End Of CLINK
List For Each Gate; As
Well As For Transmitting

MS Location .
Table leThrough LlNI(l & LINKz

bsolute | Block
MS i
Addréss 1ze

Gate Info Word
171615141312111098765 4 3 210

This Table 2 ul S TTX
Locates The cIAIAIANALY ll CNT Unused TOr
Above Defined 3 h% 342 F'6
Blocks Of Gates ~— — ~——
Within MS. 4 ¢ A B

5

Note: FF = 1 For Flip-Fiop "Gate"
T = 1 For Flip-Flop Trigger
XOrZ=0ForZAnd1 For X

Figure V-2 BLOCK STRUCTURE IN MEMORY

32

-
RN

P AT PP

e

33

placing the gate info word into R31, and the B-field of R31 into FIDX,
and then invoking the micro-instruction decoding facility. This causes
a branch to a dedicated routine which sets/resets the flag-bits as
necessary for its exact input conditions, and then returns to a common

continuation location in the main processing routine.

The second and third words of the gate block structure are labeled
LINK1 and LINK2. These are used as linkage address words in the linked-
list x-queue structure which controls the flow of x processing. (LINK2

is used only for secondary queueing as discussed in section IV). They

contain the block number and gate number of the next gate in the queue.

The fourth word is labeled CLINK and is the relative address of
the start of the list of output gates (z-gates) associated with this
x—-gate. The number of output gates for each x-gate will vary from
gate to gate of course, but for sizing considerations in this study
we have averaged the fan-out factor at 2.0 output gates/x-gate. Thus
we need 6 words per gate in each block (the four words described
above and one word for each output gate). This gives an average size

of 36000 words/block for a block size of 6000 gates.

Because the blocks will generally vary in size, there is an additional
table in main-store dedicated to locating blocks in memory. It is
indexed by block number and contains the absolute main-store address
of the start of each block and each block's size (as the number of

18-bit words in the block). This table is also shown pictorially in

" Figure V-2, and is particularly useful in aiding the process of block

loading (from main-store into control-store and back again).

PRIRIUEES IR TOPS CR NPV v

R
ERN I

1

o ekl s

) ;;_.,- ks
S

There is one more table of interest in this design. This is a
control-store resident "free core pool" table which is dedicated for
use as a linked-list queue. When, during normal x-gate processing, an
output gate (z-gate) comes up for processing which does not reside in
the same block as the x-gate, then it becomes necessary to queue such
z-gates for future processing (when the appropriate block is loaded
into control-store). This free core pool queue is used to queue these
z-gates for "pre-x-cycle processing”, and is termed the "z queue".

It is depicted in Figure V-3,

Now, returning to Figure V-1, the first action is to process
(pre-x-cycle process) the z-gates waiting in the z queue. So if the
queue is non-empty (and since the gates are ordered sequentially by-
block number/gate number), the next z-gate in the queue dictates what
block should be loaded from main-store. When the loading is completed,
those z-gates in the queue which reside in this block are processed
as normal z-gates in the following manner: The CNT counter for each
z-gate is updated according to the value of the x-gate for which the
z—-gate is an output. (If V., =1, CNTz is incremented, and if

1x

le = 0, CNTz is decremented.. For z-gates whose x-gate is in some

other block, le is passed as the sign-bit of the queue element

itself,ias shown in Figure V-2, similar to the "end-of-CLINK" flag-bit K.)

_If this CNT transitions into or out of the value zero, then the

z-gate becomes "mon-null" and a branch is taken using the micro-
instruction decoding facility to the appropriate z-processing routine.
Upon return from this routine, the z-gate has been queued into the

x-queue (using LINKl, etc.) for future x-processing. Those z-gates

34

A FREE CORE POOL

- Relative 0
N Address
‘ Each Queue
- o Element 1s A
. R9 | Start Of Free Core Pool ' Member Of A
o 210 [End Of Free Core Pool 6| Block # Gate # | (End Of Queue) Two-Word Entry
2 1 Linked-List:
(Absolute CS Addresses) K-2
: T Link
¢ % | word
N
] Where Link Word
N+2 Is An Absolute CS -
‘ \ Free Core Pool
Address Indicating
Nt The Next Element
In The Queue.
The Last Element
in The Queue
il N Contains -1
I\ In The Linkword.
7 . : Local -Store
Register Zero (RO)
Block # Gate ¢ Contains The Absolute CS
Z“_l A Free Core Pool Address
Of The Latest Eiement
Added To The Queue.
RO Queue Pntr)
Block # Gate # ABS CS Addr
.~ z, “Of NetZ A
Absolute CS
Address
RS (Next Avallable
FCP Address)
Absolute CS
Address

ORIGINAL PAGE 13
- : : OE POOR QUALITY

Figure V-3 Output Gate (Z) Queuing

36

whose CNT does not transition into or out of zero need no other processing,
so they (and the returned non-null z-gates) are simply restored into
the control-store block for future reference. This is the procedure for

normal z-processing and occurs in Figure V-1 in the boxes marked with an (*)

Following the pre-x-cycle z-processing, we begin normal X-processing.
This includes the two loops and the same basic logic shown in Figure
III-1, with the actual x-gate processing (shown as the box marked with (**)
in Figure V-1) accomplished via the micro-instruction decoding facility.
Note an additional difference exists here, in that z-gates to be
processed for a given x-gate must be checkeq first to see if they
reside in the current block in control-store. If they do not, they
are added into the z queue for future processing. And if they are in
this block they are processed as described above for normal z-gate

processing.

The implementation of tﬁis algorithm has been coded in nanocode,
and the timing studies discussed in section VI and Appendix B for non-
control-store resident systems are entirely based upon this implementation.
For systems which are completely control-store resident (system size <
6000 gates), the timing studies presented are based upon the normal x
and z processing loops of this implementation, skipping the sections
of code dealing with z queueing. This is reasonably accurate as an
estimate of resident system timing considerationms. ‘However, the linkage
words and CLINK "addresses" in memory are still in "block number/gate
number" form, and hence incur additional unneeded overhead for absolute
address computation, etc. If this code were optimized to be a strictly
control-store resident emulation (instead of the generalized "handle all

cases" emulation now coded), the efficiency of processing could be signifi-

‘cantly increased, and perhaps a 20%-30% timing improvement realized.

; re R
SINTVIN S ST SO T S

i Tt ies .

2
T

37
VI. TIMING RESULTS

In order to gain an understanding as to the applicability of the
algorithm described in the previous sections, we derived two equations
which enable the generalized projection of the timing factors involved
for various kinds of systems. (The derivations of these relations and
examples of their use are presented in Appendix B.) As-an initial,
"most simple'" case, we examined systems which reside totally in control-
store (and therefore need no data storage external_to control-store nor
the associated loading and linkage software.) The amount of time
necessary to emulate a single machine cycle is given in T-periods by
the relation:

= (68 + 35FVx + 29
T oesident = (68 * 35F)x + 29y

where F is the fan-out factor defined to be the number of output gates
per gate processed (or the number of z gates per x gate); x is the number
of gates chénging value in.the system; and y is the number of queue
processing cycles needed to emulate the data propagation associated with
a complete machine cycle. This caﬁ be thought of as the number of logic

levels in the system.

Figure VI-1 displéys this equation plotted for F = 2.0 outputs/
gate, for the value of x ranging through 5%, 10%Z, 15%, and 20% of the
system size. The datum of most interest here is that a single cycle for
6000 gates is emulated at a slow~-down factor.of 3,492:1 for a real
machine cycle of lms, with 5% of the system changing. Notice the effect
of changing F from 2.0 to 3.0 outputs/gate in Figure VI-2. A single
cycle for 6000 gates at 5% changing now results in a slow-down factor

of 4,322:1 for a 5.5 machine cycle. This change from a fan-out factor

38

0009 0005 000y 000E 0002 00T O
(000T-=)
I:M6°¢
1330S il P _
-~ 2 \\\ o* ‘o‘ %oo%ooo%
N LES U i
.Ob > -’ - %‘%‘o“%
M_ 1:30°01 V - %8%%% -
m ¢3¢o¢o¢o¢o
W | L4 Ioooﬁ%oo% -
T |
m.an. I:Mo st | sunnssnnnnun - %07 -
- ™ c&m.m
ING°LT | e arara %] n
[:0°0¢. | fay buibuey) waysAS JO % |]
N6 |- .
1°M0°4¢

A 62 + X (66 + 89)=1 :WalsAS Ju3pisaY

3J0)S-[043u07) 104 3wi] 3|94) uone|nwl T1-|A 34nbi

(3169 JO JBqUINN) AZIS Wa)SAS

0°s
6L
0°01
6¢l

0°s1

WAl

0°0¢

§°¢e

0°4¢

uj awil 3|949

=

S

A 62 + X (46€ + 89)=1 :Wa)SAS juapisay
940)S- |043U0) Jo4 awi] 3]949) uonenwi ¢-|A ainbiy

(o]
(1]

(S9}e9 JO JaqUINN) 9ZIS WaysAS
0009 0005 000F 000€ 0002 000T 0
1 | .

(000T=X) _
1962 e 52
\un \\\ ‘-‘ oooooo .
IM0°S \\ »° o —0°S
- - ' - ooooo‘o
TNS™L - - PR d¢y
~ . o

S r - \.\..\ ...%... <
AM_U IM0°0T | - ..s.%.. Ho'0l &
) ' R —
=) . o =
S 672 pr” o AR
- o =
o ooo% . 3
m.. ._“nv_o .m._.. B ooo»ooooooo SENEENESERASENANRRNANNSAND me - Q mﬁ m

._..v_m .N.— fuooo - 7 27 27 2L e&o._” - m.NH

———— %,C .

I:M0°0¢ [| e bujbueyy waysAs JO % +40°0¢

1N6°2 157¢

1:M04¢ - 0°62

8215 WaisAs A=A 0°¢ = 4

e ey ey

ERPTTRSUSISF I "I RSN

of 2.0 to 3.0 outputs/gate generally results in a 207 increase in slow

down factor. The data points for these curves are given in Table VI-1.

We can gain a more comprehensive understanding of how these curves

relate to one another by translating them into "sample time" (i.e., the amount
of time needed to emulate .l second of real time execution on a lus machine).
Figure VI-3 shows the curves for F = 2.0 and 3.0 both for 5% of the

L system changing and for 20% of the system changing. Notice that a

single sample for a 6000 gate system at 5% changing and F = 2.0,
requires 5.82 minutes, where the same sample at 20% changing requires
22.38 minutes. (Further data points are given in Table VI-2.) We

can also see that changing F from 2.0 to 3.0 increases the sample

Gl e e sl

time by the same 20% seen above.

It is petrhaps most useful to view this data from an experimental

Lo point of view, and to see how long it would take to run for example

. 10,000 samples of .l second real time each. Figure VI-4 displays this
information. For a 6000 gate system with a machine cycle time of 5.3,

_with 5% of the system changing, it takes approximately 40 days or about
1 1/3 months to run a 10,000 sample test with F = 2.0. The data points

for these curves are given in Table VI-3.

In addition to the above described "most simple' case, we expanded
our study to include larger systems whose size necessitates system
residence in main-store with "blocks" of gates being loaded into control-

store for processing. The equation for these systems in generalized

form is as follows:

WaysAS Juapisay 9.0)S-104)uo)
Jo{ awyl ajdwes uonenwl ¢-|A aanbi4

-
~

(S8)e9 JO Jaquinp) 3ziS wa)sAs

0009 000s 000% 000€ 000¢ 0001 0 0
1
6'¢
-
e - 0
- sL &
| =
001
>
LA .
>
0°€~4 0l S
o\ 0°C=] vrememmim =
’ e o=
P :buibueyn wa)shs %0z [1S5 °L1 @
s
¢\o & 0] wararera | |..
\o\ \- o.Nun_ SRR 0°0¢
v.\) s’ :buibuey) waysAs %¢ | _ ¢z
%00
£ 0°S¢

(auw] 1eay) 8|9k aulydew sify £_>>\m_a=_mm puodas o1/1

WwaysAS Juapisay 940)S-104u0) Jo4
aziS a|dwes Jad awil uonenwi p-|A ainbiy

o~
3

(sajdwes puodas QI/1 JO Jaquny) azis ajdwes

wooﬁ 000v1 00041 00001 0008 0009 000V oo_oN 0
_ _ _ T

Sk {oc
(2]

3 100 =
s S
o

\U.U.... - 0§ 5
wn | S
FK / H09 &
m\ \\\ 0 *€ = . - 0L

o | oy

¢l -1 06

43

Tnon-resident = (# blocks in system) X {(44) X (4 + F) X
(block size) + 84 X (z prequeued) + 94 +
(z queued) X [72 + (25) X (n - 1)] +

(68 + 35F)x + 29y}

where z prequeued, z queued, and n are variables associated with the
processing of output gates which reside in blocks other than that of
their input gates (see Appendix B for exact details). 1In order to

gain an appreciation for the meaning of this relation and the processing
involved in such an emulation system, we will consider a system with
only two blocks, each block sized at the maximum available control-store,
6000 gates. Thus we have a 12000 gate system. Assuming 5% changing

and F = 2.0, as above, we find that a single cycle on a 5.3 machine
takes 260,579,630ns. This is a slow down factor of 260,580:1. A

single .l second real time sample would take 7.238 hours, so a 10000
sample test would require 8.26 years! As you can see this is not a
feasible approach. The reason these numbers are so high is that main-
store accessing is extremely slow. It requires 22 T-periods/word to
transfer from main-store into control-store, which means to load a
single 6000 gate block (with 6 words of data required for each gate) it
takes (22) X (6000) X (6) = 792,000 T-periods = 63.36ms. Hence this

overhead becomes quite prohibitive.

44

e TR R T

g

ajeg-Xx Jad saje9 Idig 0° = 4 4o

9ZIS Esim\» - A

Rog+ X(ds€ + 89) = SW Ul 1

e

O LL 1L°0L 6¢’€9 LLYS - cLvy 29°1¢ = A
buibuey)
LLgp'el | Tv0¢'Tl 1816°8 | 0TSL79 861’y v18¢°¢ waysAs
10 %0¢
buibuey)
LGTT°0T '8 L0179 | 0660°G 8glv e b6eL "1 wa)sAs
J0 %Sl
buibuey?)
1€08°9 | 1v¥89°G | L29s'v | O06EV’E] K4 PLLIT'T waysAs
40 %01
buibuey?)
AL Iw26°¢ | Lvse'¢ | O0€8L'T 8L0¢°1 1274 M wa)sAg
10 %S
saje9 $9)e9 saje9 9189 saje9 sa)e9 =X
0009 0009 000t 000¢ 000¢ 0001
wajsAs
Wa)SAS juapisay 8.4o}S-{0juo0) Jo4
(SW ul) awjl 8947 uofje|nwy

45

9ZIS Wa)SAS \» = A

3)e9-X Jad sajeg nding 0°¢ = 4404 A6z+ X(Js€ + 89) = SW-u] I

9v°LL 12°0. 62’€9 LLYS L'y

HH

L181°9T | Tv00°pT | 2812°T1 | o1gp°s 86£9°S buibueyy
%02

16€9°21 | bSOl | L06h°8 | 066€°9 8662V T6v1°2 buibueys
%1

Lesy°8 | T¥89°L | Le89's | 06l2y | 8182 LSy T buibuey)
: %01

ey | 1029°¢ | Lvi6'2 | 0€02°2 818V °1 9L buibueyy

-S3jed saje9 saje9
0009 0009 000Y 000¢ 000¢ 0001

Wa)SAS JuapIsay 8.0)S-|0U0T) 104
(SW ul) awyy 8194y uoneinw3l qr-|A 3iqel

-, o e P R TN VNG TR O .é‘\

O
<

0°2-1 UNM Wa)SAS JUapISay 8.0}S-|043u0)

buibuey)

8€ 22 19°81 9 ‘¥ 6zl 05°L |UIW 08°€E - wasAs

LL°evel | Tpe0eit| 18°L68| 01°GL9 8615y [98S ¥1°82C %02

1 6uibuey)

98 91 101 82 11 6v°8 69°G |UIW 88°C WwaysAs

ISTIOT | Tv°wb8| LO°LL9| 05605 86 e [99S 16 °2eLl JO %S1

buibuey)

A L6 09°L €L°G 8¢ |UIW 9%°T" WwaysAs

1€°089 | 1v°895| L2°9sb 6 "eve 81°1€2 |99S pL°L11 JO %01

buibuey?

28°S 18y 26°¢€ 16°2 10°2 UIw +0°1 waysAs

Ieve| 1v°ee2| Lv'sez| 0e°sLl 8L°021 | 99S 15°29 JO %S
saje9 saje9 saje9 sajeo saje) sajeo =X

0009 000¢ 000% 000€ 0002 0001 | azIs

waysAs

e R e Tord

aujyoe ST uQ ajdwes awij-jeay puodads Ol /1
ajbuis y 104 awy) ajdwes uone|nw3 ez-|A 8igel

™~
3

0°¢c=4 UM Wa)SAS jJuapisay 8.0)S-[043H0)

. .]) . . buibuey)
86 *L¢ e el 69 '8l 60 1 6€°6 UIW §L°P waysAS
L1°8l9T1 | Th°0ObT | L8°TZIT | OT°et8 86 °€95 | 99S v1°18¢ 10 %02

buibue
90 °1¢ 16711 80 1 66 01 60°L UIW 86°¢ E&hw
16°€9¢1 | Ty b0l L0°G¥8 | 06 °GE9 86°Geh | 8S 16 Y12 10 %¢1
bujbue
plpl 18°11 Lv’6 el’L 6LV UIW €v°¢ Esmﬁw
L€ °8V8 1780 L2°89G | 06°LeY 81°18¢ | 98S pL°abl 10 %01
. buibuey)
2L 09 a8y 19°¢ 8 °¢ UIW 82°T WaysAS
L1 eey v °29¢ Ly°16¢ | 0€°0¢2 8. .wE 28§ P5°9L 10 %6
sajeq saje9) msmw sajed sajed x|
0009 0009 000 000¢ 000¢ 0001

B s L

TR 4T

i

auIyoeW S TUQ a|duies aw|l-|eay pudas O1/1
a|bu1S v JoJ swi] ajdwes uopejnwl qz-|A ajgel

48

€ - IA2Ie]

(81949 BujyJeW ST UMM oWl [eay puodas T° - ajduwes yde3)

2208 oreor| . L1°09 b1°0s I°op 80°0¢ | 90°02 €0°0T | skeq S.m_ 0°€
ulW 22°L | €€°se6T | L9°vB9T | O'vIPT | €E°E02l | 1972% 0°22L | -€€°18F | L9°0v2 |S4H €€ 02T
0°026STT | 0°080t0T | 0°0#998 | 0°0022L | 0°09LLS | 0°0Z€EY | 0°0888Z | O°OWIVI | UIW 022L

1979 8695 058y v oy 1943 LT /4 91°91 80°8 | sAeQ v0'v
ulw ¢8°¢| 0°¢ssl | 0°8sel 0911 | 0°0L6 0°9LL 0°¢8S 0°88¢ 0°vol SIH 0°L6] 07¢
0°021€6 | 0°08vI8 | 0°0v¥869 | 0700285 | 0°0959 | 0°0L6VE | 0°082€2 | 0°OV9IL | UIW 08S

ajdwes | sajdwes | sajdwes | sojdwes | sajdwes s9|dwesg | sajdwes | sajdwes sajdwes | sajdwes J
Jad auil 00091 000vT 00021 00001 0008 0009 000¥ 0002 0001

buibuey) %6 UIM WajsAs 3je9 0009
0] 9215 ojdwes sA awi]

g W N TR L

49
VII. CONCLUSIONS

As we stated in the introduction, the intent of our implementation

was to prove the feasibility of using gate level emulation technology

in support of data collection for reliability studies of fault tolerant

e

o digital avionics equipmeﬁf. It is clear that to support statistical
-measures, the key potential problem is the time necessary to execute
a sample run on the gate level emulation. If this time is too long,
the task of running a statistically significant number of samples
becomes overwhelming. We have therefore focused our feasibility

determination on the execution speed of gate level emulation.

As shown in Appendix B, our QM/l implementation results in a
1200:1 slow-down factor for a 2000 gate, control-store resident system
within the constraints given in that appendix. This datum is also shown
in section VI in the graphs although it is not explicitly noted since
the 6000 gate e%ample given there is the limiting case. This 1200:1
slow-down compares very favorably with the best possible case for
slow-down shown in section III of 600:1, since the implementation
contains features which cause additional overhead for address calculation
and system partitioning into blocks. The maximum resident system of

6000 gates also falls in the reasonable range of 3500:1 slow down.

On the other hand, the partitioned system case, of which the 12000

gate, 260,500:1 slow-down is an example, is clearly not feasible for

any reasonable number of samples. Based on this, we conclude that the

gate level emulations should be restricted to control-store resident

subsystems, which for the QM/1 works out to a maximum of about 6000 gates. We do not
feel this is overly restrictive considering that we have seen gate level

simulations of current technology micro-processors which fall in the

range of 2000 gates. Thus 6000 gates can represent a fairly substantial
subsystem. Furthermore, by restricting ourselves to completely resident
emulations, further economies in the implemented algorithm can be
achieved as mentioned in Section V. We estimate that we can achieve

about a 20-30% improvement in speed.

The primary conclusion we can make based on the implementation for
the QM/1 is that gate level emulation is feasible to do and provides

the speed necessary for statistical studies of reliability.

Although the implementation we did was based on the QM/1 archi-
tecture, the restrictions imposed by that machine do impose a limit

on what is achievable. Examples are the 6000 gate limitation and the

.additional overhead necessary to decode ten bits rather than the seven

that the QM/1 is set up for. Three pdssibilities come to mind in terms
of providing the emulation support capability for the final facility.

The first of these is to consider making hardware modifications to the
QM/1. This could include expansion of the maximum permissable control-
store size or the addition of a bus to conmect main-store and control-
store directly. Secondly, other micro-programmable machines may be

more amenable to the application. And finally, the possibility of
building a special purpose, gate level emulation machine should be
considered. Such a machine might be readily assembled from 2900 series
chips. All three of these possibilities will be considered in the second

phase of the contract.

50

P LT

bl kR

VIII.

51

REFERENCES

1. QM-1 Hardware Level User's Manual, Nanodata Corporation,
March 1976.

2., MULTI Micromachine Description, Revision 1, Nanodata
Corporation, March 11, 1976.

3. Digital Avionics Design and Reliability Analyzer,
Feasibility Study Report, MCR-79-663, Martin-Marietta
Aerospace Corporation, November 1979.

et
nd
o

¥

bl A

IRV
LGN

ey R
SIS 3 X ARy %

o AT v e

APPENDIX A A-1

UNIFORMITY OF GATE TREATMENT

One of the primary benefits of the NASA LRC gate level emulation
algorithm is the concept of gate processing independent of the function
of the gate itself. What this means in practical terms is that the
algorithm does not need to keep track of the gate type and can handle
ANDs, ORs, NANDs, and inverters all in exactly the same fashion. This
appendix is intended to provide a brief description of how this is

possible by discussing a few examples to illustrate the processing

done and decisions made.

In order to process the gates, two values are required. The first
represents the current value of the gate. We will call this V, The
second quantity relates to the number of inputs of the gate. We will
call this value CNT (for count). This number is the key to the pro-
cessing and the distinction as to type of gate is characterized py the

initial values assigned to CNT and V.

In operation, whenever an input to a gate changes value (from O to
1 or vice versa), the quantity CNT is operated on, For the 0 to 1 change,
CNT is iﬁcremented by 1. For the 1 to 0 change, CNT is decremented by 1,
The gate whose CNT is being updated will change value whenever CNT
transitions either into or out of 0, That is, if either the old value

of CNT is zero (before increment or decrement) or the new value of CNT

~is zero (after the increment or decrement), then the value V is changed

(0 to 1 or 1 to O depending on current value). A few.examples will

best illustrate this.

b

JRVEREIR FEOP R AL F TN BE S R IO

Example 1 : 3 input AND gate

=]) v-ABeC
c

e

L>

The description of the action of the 3 input AND gate is best described

by the following state diagram.

st
Gl R s
Y WONCAREP N, A-UBUF RPN

ORI S

SA
bl

oyt < '"Pug 1 -8 Inpys ¢ rﬂ _
Value V- @ ‘ Value V-1
Note that the left to right arcs repfesent an input going from 0Otol
while the right to left arcs represent an input going from 1 to 0.
When we get to the rightmost state, all inputs are 1 and hence the output
V is 1. In all the other states, at least one input is 0 and the

output V is 0. Now suppose we let CNT = O for the case where all

inputs 1. The state diagram with CNT values in place of number of

inputs = 0 is:

Value V=1

Value V- & 1

Note that the arcs on this diagram represent exactly the same as on
the previous diagram; i,e., left to right is an input going from O to 1

and right to left is an input going from 1 to O. The transition of

2
L

Tt b A it DAL

o

e M M A e o e e s

Ml Sl adnd

e

. ar
A

]
2
A
|
i
3
b |
1
3
.
i3
3
- %
o
-3
<3
X
Ty

CNT into and out of O occurs across the dotted line and value V does
indeed chaﬁge when we cross this line. From this diagram, we see that,
to initialize CNT and V for an h—input AND gate, we first assume all
inputs are 0. We then set CNT = —number of inputs and V = 0. After
initialization, we can blindly follow the specified processing and

the proper gate output value will be produced.

Example 2 : 2 input NAND gate

The NAND. gate is a simple extension to the AND., The onlydifference is the

value of V. V will be 1 to the left of the dotted line and 0 to the

right. Thus a 2 input NAND gate state diagram looks like:

l
Value V=1 | Value Vg

Initialization conditions are CNT = -number of inputs and V = 1,

E%ample 3 : 4 input OR gate

A
gj\ V=A+B+C+D
—

3
s
S]
N
Lt
LA
5
;

L .
ER-L TR T SR

5
<
4
i
T
EY
L
3
'S
]
n
vt

3

The state diagram for the OR gate looks like:

Vaiue V-8 | Value V-1
|
To isolate the CNT = 0 node in this case, we need to isolate the state

to the left of the dotted line. Thus the CNT state diagram looks

like:

[}
Oecrorhent o a""ﬂnent s
Value Vg | Vvalue vel

Thus the initial condition (all inputs 0) for an OR gate are: CNT = O,
Vv = 0. The extension to a NOR is made simply by using CNT = 0, v=1

for initial conditioms.

Example 4 : 2 input XOR gate

. AiDVﬂA'E*’K'B
B

The state diagram for the XOR gate is;

Both
Inputs
=1

Input lrl Inp | 1=9
v | V=1 | V4

. RN S
v PR
: -~ " "‘. e : P
U ICEARINACTIV AW TR W e Be

I NI BT STY TIPS

The CNT state diagram becomesi

F— 1

DONO

! vi | v

This again is a simple case for the general algorithm., Initial

Vg

values for the two input cases are CNT = :1, V = 0. This is also the
case for the general "odd" number of inputs type gate (i.e., 1 is produced
for an odd number of inputs = 1). The only difference is that instead

of signed arithmetic, modulo arithmetic is used (-1 mod 2 = 1).

Based on these examples, the initial conditions (assuming all
inputs 0) for the most common gates are given in Table A-1. The

inverter can be handled as either a one input NAND or a one input NOR.

Type - Initial Value
Gate CNT v
AND - -number inputs 0
NAND ~number inputs 1
© OR. 0
NOR 0 1
INVERT -1 1
INVERT 0 1
XOR ‘ -1 0
NXOR -1 1

Table A-1

ERNPO S (ARSI APEIP SR N S

TR

izalt

Once the initialization has been done, the processing of each
gate is exactly the same, regardless of type. In addition, the concept
is flexible enough to be able to handle more non-standard type gates
(é.g., the odd number of input counter which could be used for parity

generation).

APPENDIX B B-1

o DERLVATION OF EQUATIONS

k% This appendix explains the basis for the system "emulation time"

‘ equations used in this report. Two basic equations are derived herein,
i the first for systems residing totally in control-store (e.g., system
size < 6000 gates); and the second an approximation for larger systems
,f which necessarily have only part of the system in control-store and the
remainder in main-store. This appendix first explains the former of

these and then gives some examples. Following this is the derivation

) LA E N RV

i
RURLIN

of the second equation and then an example of its usage.

PR

It should be understood that these equations are derived from the
actual implementation of the algorithm described in section V.
The given timing considerations are simply the sum of the individual

T-periods involved in executing the algorithm. (Thus when it is stated

that x-processing takes 46 T-periods, this comes from examining the
code itself. Recall that one T-period is the basic unit of time for

nanocode, and is defined to be 80nms).

I. DERIVATION OF THE EQUATION FOR CONTROL-STORE kESIDENT SYSTEMS

";f Given: 1) x-processing requires 46 T-periods/x and 29 T-periods/
logic level in the System (using 5 T-periods for

most common case processing routine);

2) z-processing requires:

62 T-periods/non-null-z

and 35 T-periods/null-z

Where non-null-z's are those output gates whose counter (CNT)

transitions into or out of zero as it is processed during normal z-

S SRS SN RV GE S S NP

processing. This results in that z gate being queyed as an x-gate for
processing in a future cycle. Null-z's are z-gates whose counter

does not transition into or out of zero and hence cause no further

NG LEIN G

LTz D

action to be taken. In addition the last z processed for each x

G«

takes 5 T-periods less than the other z's, hence: -5 T-periods/x.

Adding these together we get

- 3 L - 1 r (4L .
T .sident (46 - 5)x + 62X (# non-null z's) + 35X (¥ null-z's) + 29y

with y = # logic levels in the system. (L

Now consider that

total # z's=# 2's/x

1 fan- f =
) the fan-out factor F total ¥ x's

- +l /3 ——a] s 2 3. 3
hat the # non-null z's is identically equal to the

N
~
ct

and

number of x's since each x comes from a non-null z.

B-3

;Eﬁ Hence: F = z/x
f (# null z's) + x = total # z's
 § so (# null z's) + x = xF
fé S #null z's = xF - x = x(F-1). (2)
]
K

Substituting equation (2) into equation (1) we get:

3
[]

(46 - 5)x + 62x + 35[x(F - 1)] + 29y

(41x + 62x + 35xF - 35x + 29y

68x + 35xF + 29y

P T P S L IR -
[T FIN PP W e S WU T e

Tmsident (68 + 35F)x + 29y. (3)

e

o Equation (3) is the general form of the control-store resident
system equation. Now for the following examples let us assume that 5%

of the system changes at any given time. Thus

x = (.05) X (system size) (3.1)

Additionally, in order to estimate the value y, the number of logic
levels (or x-queue cycles), we need to make an assumption concerning the
system itself. To facilitate this assumption, we will deal with an
intuitive concept called system shape. We assume the system is in
general rectangular when the logic levels are plotted across the top
of . the diagram and the gates per level down the side. For example,

the RS flip-flop below is square (2 logic levels w/2 gates/level)

Logic |
Level 1 2

Gate
1 -

‘ | =>)
. Dt

B-4

Now, we recognize that, for larger systems, the general shape
will be a non-square rectangle with the long side in the vertical

direction; i.e., P

5
1
i
4
]
S

Where P < Q

However, the algorithm will translate feedback (as in the flip-

flop shown before) as additional logic levels. Because of this, the

ISR L T Tt 23 SR

general shape of the system, as seen by the algorithm, will become more
'5 square. Therefore we will assume for the following examples that the

system is square so that the number of logic levels (y) = number of

gates per logic level = Vsystem size . (3.2)

Combining (3), (3.1), and (3.2) with a fan-out factor of

F=+#2"s/x = 2.0 we get:

Tresident = (68 + 35(2.0))(.05) (System Size) + 29/system size
Hence:
T esident — (6.9) (System Size) + 29Vsystem size (3.3)

Example I: System Size = 2000 gates:

(6.9) (2000) + 29(¥2000)

Tresident

13800 + 29(44.725)

15097 T-periods = 1207760ns
Or a slow down factor = 1207.8:1

for a gps machine cycle. (12,077.6:1 for .Bgs machine)

N [. RSN
L iathetin S R i e B S 0 L e Tl

Example II: System Size = 6000 gates:

Tresident

Or a slow

for a }gs

(6.9) (6000) + 29(v6000)

41400 + 29(77.46)

43646 T-periods = 3491680ns
down factor = 3491.7:1

machine cycle. (34,916.8:1 for .%ﬁs machine)

RPN NI RV A SUBRAA & DS

Nt et Y b
ikl G S

SN

R

s

RN
I e i

3y

PRIVRF AT CRRRVM S

II. DERIVATION OF THE EQUATION FOR NON-CONTROL-STORE-~RESIDENT SYSTEMS

In order to accommodate large systems whose size prohibits

residdnce of the entire system in control-store, in this emulation

"blocks" of gates (large tables of gate data) are loaded into

control-store one at a time for processing, while the remainder of

the system being emulated resides in main-store. When a block is

loaded, the first processing necessary is that needed for z gates

residing in this block which were queued by previous x gates in other

blocks. This uses an additional queue, dedicated to this situation,

and so we have termed this initial z processing "prequeue" processing.

So we define "zprequeued" as the number of z gates processed in this

prequeue phase. Similarly, "z queued" is the number of z gates queued

during the normal processing of each block onto this dedicated z gate

queue.

Now, given that:

1)

2)

3)

it takes 22 T-periods/word to transfer 18-bit words

from main-store into control-store (and visa versa),

with an overhead of 28T-periods per block;
pre-queue processing of z's takes:

84 X (z prequeued) + 66;

there are 4 words/gate in the memory tables plus one
word for each output gate (z). Assume a fan-out factor
= # z's/x = F. Then 4 + F words are needed in memory

per gate.

So to begin with, equation (4) below accounts for the loading of the
new block from main-store into control-store, and the processing of
z's which were queued by some previous block. All of this occurs

prior to the normal x and z processing:

Tpre = (44) X (4 + F) X (block size) + 84 X (z prequeued)

+ 94, 4)
Equation (4) will be in effect for each block as it is loaded, and includes
the restoration of each block to main-store.

In addition we must consider the processing of gates in the block

while it is in control-store using equation (3).

Furthermore, subroutine ZQUEADD is used to queue z gates who
reside in blocks other than the current block in core (onto the dedicated
z queue). In this process each element in the queue is compared with
the z being placed onto the.queue to ensure sequential ordering of
the queue (by block number and gate number). This searching takes
25 T-periods for each queue element searched which does not yield the
position for the new z. Hence if there are m elements in the' queue
and n of these are searched for each z being added (including the
element which reveals the location for the new z), we must add
25 X (n~1) T-periods fér each z placed onto the queue. Additional time
is needed as well, but the séarching accrues most of the queueing time.

Thus for each block:

Tuneadd = (Z queued) X [72 + (25) X (n-1)] . (5)

Hence if we combine equations (3), (4), and (5) we arrive at what
seems to be a reasonable approximation equation for systems of more

than 6000 gates:

= + 2 3
T esident (68 + 35F)x 9y (3)
f Tpre = (&) X (4 + F) X (block size) + 84 X (z prequeued)
; > N 7 _ 1 -
E T ,queadd (z queued) X [72 + (25) X (u - 1)] (5)
T verall (Tresident + Tpre + Tzqueadd) X (# blocks loaded)
(Where T . is interpreted such that x and y are associated
resident

" with block size instead of system size)
Substituting we get:

T = (# blocks in system) X {(44) X (4 + F) X (block size)
+ 84 X (z prequeued) + 94 + (z queued) X [72 + (25) X (n - 1]

+ (68 + 35F)x + 29y} (6)

Equation (6) is the general form of our equation. Now for the
following example, we will make some assumptions concerning the system
under consideration. First we need some way to approximate,as closely
as possible, the number of output gates (z's) which are prequeued for
a block by éther blocks, and as well, the number which are queued by

each block. If we assume a square system (as discussed previously for

3“f% the resident system configuration) then the number of outputs for a
block = vblock size . Additionally if 5% of those outputs are changing,
then we can assume 5% of vblock size as a reasonable estimate for the

* ‘gf numbe£ of z's to be prequeued for and/or queued by a given block.

Thus: =z prequeued = z queued = .05vblock size . (7)

Similarly we can say that the number of logic levels in the system

= y = /block size (8
: (based upon a squafe system configuration). Now we must gain an
understanding of n, the number of elements in the queue which are
searched in order to add each z queued into the queue. We know from
(7) above that for each block, 5% of /block size is the number of gates

;;5 queued by that block. Thus (i block; in system) X (.05Vblock size)

;i gives the maximum length of the z-processing queue at any time. Now

we further assume that on the average, 50% of the queue needs to be

searched for any given z.

Hence: n = %(# blocks in the system) X (.05Vblock size) 9

Combining equations (6), (7), (8), and (9) we get:

T = (# blocks in System) X [(44) X (4 + F) X (block size)
+ (84) X (.05/block size) +94 + (.05/block size)
X {72 + (25)-X [(Gs) X (# blocks in System)
X (.05/block size) - 1]} + (68 + 35F)x + 29/block size].

Combining terms gives:

L |
0

(# blocks in System) X {94 + (44) X (4 + F) X (block size)
+‘(.05V510ck size) X [156 + (12.50) X (# blocks in system)
X (.05vblock size) - 25] + (68 + 35F)x + 29vblock size }

(# blocks in System) X [94 + (44) X (4 + F) X (block size)
+ 7.8V/block size + (0.03125) X (# blocks in system)

X (block size) - 1.25/block size + (68 + 35F)x +
29/block size],

¥
b
8
1
<
&

So T = (# blocks in system) X {94+ (block size) X [(44) X (4 + F)
+ (0.03125) X (i# blocks in System)] + 35.55vblock size

+ (68 + 35F)x}. (10)

Equation (10) is valid for all x and F in all systems meeting our
initial assumptions. But in generai we wish to use this as an aid
in determining if this type of system is feasible. Hence let us
further .assume that the number of gates changing in the system at
any given time is 5%. Thus x = 5% of the block size. Furthermore,
assume a fan-out factor of two output gates per gate so F = # z's/x

= 2.0. Substituting these into equation (10) we get:

T = (# blocks in System) X {94 + (block size) X [(44) X (4 + 2.0)
+ (0.03125) X (# blocks in system) + (.05) .X (68 + 35 X 2.0)]
+ 35.55vblock size }.

In simplifying this equation, for the purpose of understanding the
nature of this relaﬁion and its applicability to real systems, we assume
the most simple case in which block processing occurs sequentially
without interbloak feedback. This means that the total system size

= (# blocks in the system) X (block size), and hence we can substitute
system size‘into the equation for the term which contains this product.
Realizing that this is not the general case, it is understood that

for more complex systems; the time T will be greater than that which

is given in this equation.

Thus by combining terms and substituting system size appropriately

we get:

B-11

T = (# blocks in System) X [94 + (0.03125) X (system size)

+ (270.9) X (block size) + (35.55vblock size)]. (11)

Equation (11) gives T (in T-periods/cycle) for simple case systems
with F = 2.0 and 5% of the system changing. An example of its use

follows.

Example of Non—-Resident System:

R IRy - IS, DL VU

System size = 12000 gates.
: Block ssize = 6000 gates.
; (hence # blocks = 2)
: T = 2[94 + (0.03125)(12000) + @70.9)(6000) + (35.55)(77.46)]
&

5
14

W e e -
(TR i B
RURHSI WERTIRYIAN A

204 + 375 +1,625400+2753.7)

P

2(1,628,622,7) = 3,257,245.4 T-periods

= 260,579,630ns

Or a slow down factor of 260,580:1for a }‘s cycle machine.

@,605,796:1 for a .}.s machine)

Compare this to the 3491.7:1 slow down for a resident system of

6000 gates. (34,917:1 for .llus system)

APPENDIX C

NANOCODE FOR BEST CASE TIMING ESTIMATE t

This appendix contains the "minimum" nanocode to implement the
é processing necessary for the algorithm as defined in section III. The
'i structure shown in Figure III-3 is assumed and the following Local
. Store (LS) register assignments are also assumed:

LS register contents
X address of current x gate info word

‘ y address of address of current z gate info word
é z address of current z gate info word
4
: w MLINK
; a constant integer 2

b seratch

. SN g ML
RNUUNRESUTRRE 7% SN PR ArOrC - et

c-2
The x-gate processing (read of info word) and multi-way branch assumes:
gate info word address in LS register x.
XPROC: BRANCH(N. + 1)
KA = x
KB = 31.
X... KA - FCIA, KB -~ FCOD Set up to read info word into
R31.
4T X.. CS bus wait.
: ..S. READ CS(CIA), GATE CS, R31+ gate info word.
k READ NS, GATE NS
X... B-FIDX Set up top 3 bits of NS address.
E X.. INCF » FIDX Al in bit @ signifies x processing.
3 5T ..X. LOAD NPC(CS) Set up NPC for branch based on
‘ FIDX and top 7 bits of gate info
’ word.
...S READ NS, GATE NS Branch through micro-op-code.

9T

JEOF

Read of CLINK for this x assumes:
- gate info worq address is in LS register x
- constant 2 is in LS register a

; - scratch register is LS register b

- gate info word address for next output (z gate) is in LS register z

: ...+ BRANCH(ZPROC)

KALC = ADD

i KA = x

j ‘KB = a

B KT =y

| X... KB - FAIR, KA - FAIL, Set up to get b = xta (z = x+2)
E KX > FAOD

9 .S.. GATE ALU, KT - FCOD, Register b <« x+2 (addr CLINK into
e KX + FCIA. b). Set up to read CLINK value
;} into y.
~$ 6T .. X CS bus wait.

" ...X READ CS(CIA), GATE CS, y < CLINK (address output gate
B READ NS, GATE NS list).

6T This then proceeds to Z processing (ZPROC).

=
2
]
£
'
A
=1
A

C-4

Set up for next x-gate assumes:

6T

6T

current gate info word address is in LS register x

scratch register is LS register b

«... BRANCH(XPROC)
KALC = INCR LEFT
KA = x
KB =b

X.... KA » FAIL, KB -»> FAOD, Set up to increment address to

SET CIH get addr of LINK.
.S.. GATE ALU, KB - FCIA, Scratch register b <« x+1. Now
KA - FCOD set up to read that LINK.

. X CS bus wait.

...S READ CS(CIA), GATE Cs, x <« address next gate info word
(LINK of current word).

READ NS, GATE NS Then go to XPROC.

z-gate processing set up and branch assumes:

- address of the address of this z gate info word is in LS
register y

o% - address of this z gate info word in LS register z

ZPROC: BRANCH(N. + 1)
KALC = INCR LEFT

KA =y
KB = z
: KX = 31.
] X... KB - FCOD, KA + FCIA, Set up to read gate info word
f% KA -+ FAIL, SET CIH for this gate; and to incre-
_E ment the address to point to
;é next gate address.
:é 5T .X.. KA » FAOD Want to write the new address back.
'ﬂ ..S. READ CS(CIA), GATE CS, Register z + addr gate info
-
:g GATE ALU, READ NS word. y <« yt+l (Next gate addr).
: 7
E ...X KB > FCIA, KX » FCOD, Set up to read gate info word
Qé GATE NS into R31.
E : BRANCH(N.+1)
¥
£ X... , CS bus wait.
4T .S.. READ CS(CIA), GATE CS, R31 <« gate info word for this z.
READ NS
..X. B~ FIDX, GATE NS Set up top 3 bits of NS address.
3T X... LOAD NPC(CS) Set up multi way z branch.
Eeal .S.. READ NS, GATE NS And go.

12T

&N
=

3
N
-‘:'J
3
B
]
o
i

3
A
]
ol

b |
5

Addition of z-gate to link queue assumes:

.o
.
.

6T

. 'x‘o

6T

Scratch register LS is register b

MLINK is in LS register w

BRANCH (N.+1)
KALC = INCR LEFT
KA = z

KB =b
KX=w
KS = PASS LEFT

KA -+ FAIL, KB - FAOD,
SET CIH

GATE ALU, KB - FCIA,
KA - FCID,

KA - FAIL

G(G KS); G ~ KALC
KX - FAOD

WRITE CS(CIA),
GATE ALU,
READ NS, GATE NS

This z gate info word address is in LS register z

Set up to find addr of LINK

for this z.

Scratch register b <« addr LINK.
Now set to write MLINK into this
LINK,

And to set MLINK to address of
this z info word.

Change ALU to PASS LEFT this gate
info word addr to MLINK.

Set LINK to MLINK. Set MLINK to
gddr of this gate info word;

And continue.

1S s e

For each x-gate, the last z output test assumes:

- LS register contains address of this gate info word

- bit 17 is set for the last z in list

.o

P BRANCH (XPROC)

ALT BRANCH

KALC = PASS LEFT
KT = SIGN

KA = 2z -

X... KA > FAIL
4/6T .X.. LOAD NPC(SEQ)
..S. READ NS, GATE NS(T)

..S READ NS, GATE NS

: coee BRANCH (ZPROC)
2T S... READ NS, GATE NS
4/8T

Test sign bit.
ALT. BRANCH to next word.
Branch to XPROC for sign = 0.

Otherwise continue to N.+1.

Report Documentation Page

National Aeronautcs and
Space Adminstration

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
NASA CR-181641

4. Title and Subtitle 5. Report Date
Digital Avionics Design and Reliability Analyzer February 1981

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

10. Work Unit No.
505-66-21-03

9. Performing Organization Name and Address

. . 11. Contract or Grant No.
Martin Marietta

Denver, CO 80201 NAS1-15780

12. Sponsoring Agency Name and Address Contractor REPOY‘t

13. Type of Report and Period Covered

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23665-5225

14, Sponsoring Agency Code

15. Supplementary Notes

Technical Monitor: Gerard E. Migneault
Langley Research Center

16. Abstract

This document contains the description and specifications for a digital
avionics design and reliability analyzer. 1Its basic function is to provide
for the simulation and emulation of the various fault-tolerant digital avionic
computer designs that are developed. It has been established that hardware
emulation at the gate-level will be utilized. The primary benefit of
emulation to reliability analysis is the fact that it provides the capability
to model a system at a very detailed level. Emulation allows the direct
insertion of faults into the system, rather than waiting for actual hardware
failures to occur. This allows for controlled and accelerated testing of
system reaction to hardware failures. There is a trade study which leads to
the decision to specify a two-machine system, including an emulation computer
connected to a general purpose computer. There is also an evaluation of
potential computers to serve as the emulation computer.

17. Key Words (Suggested by Author(s}) 18. Distribution Statement
Reliability Analysis Unclassified-Unlimited
Digital Emulation Subject Category 62

19. Security Classif. (of this report) 20. Security Classif. {of this page) 21. No. of pages 22. Price
Unclassified Unclassified 153

NASA FORM 1626 OCT 86

